Skip to main content

One-Dimensional Finite Element Modeling of AFM Cantilevers

  • Chapter
  • First Online:
Acoustic Scanning Probe Microscopy

Part of the book series: NanoScience and Technology ((NANO))

  • 1806 Accesses

Abstract

In order to account for realistic cantilever geometries and tip–sample interactions, finite element methods (FEM) can be powerful alternatives. In this chapter, we opted to use a one-dimensional (1D) FEM model for the cantilever beam, which permits to treat the exact vibration of the beam in the contact mode, regardless of its shape (rectangular as well as triangular beams) and excitation mode (by the beam holder, by the sample, by a localized, or distributed force). Based on a classic finite element scheme, it is easy to program for a non-specialist user and as rapid as the usual analytical models. We demonstrate that the mode of excitation of the beam strongly influences the cantilever’s frequency response in the contact mode. This chapter is therefore an attempt to propose in a simple numerical model, a tool allowing a deeper understanding of the dynamic mechanical response of the AFM probe in contact with a viscoelastic sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Radmacher, R. Tillman, H. Gaub, Biophys. J. 64, 735–742 (1993)

    Article  Google Scholar 

  2. N.A. Burnham, G. Gremaud, A.J. Kulik, P.J. Gallo, F. Oulerey, J. Vac. Sci. Technol. B 14, 1308–1312 (1996)

    Article  Google Scholar 

  3. O. Wright, N. Nishigushi, Appl. Phys. Lett. 71, 626–628 (1997)

    Article  ADS  Google Scholar 

  4. U. Rabe, J. Turner, W. Arnold, Appl. Phys. A Mater. Sci. Process. 66, S277–S282 (1998)

    Article  ADS  Google Scholar 

  5. K. Yamanaka, A. Noguchi, T. Tsuji, T. Koike, T. Goto, Surf. Interface Anal. 27, 600–606 (1999)

    Article  Google Scholar 

  6. O. Pietrement, M. Troyon, Tribol. Lett. 9, 77–87 (2000)

    Article  Google Scholar 

  7. E. Dupas, G. Gremaud, A. Kulik, J.L. Loubet, Rev. Sci. Instrum. 72, 3891–3897 (2001)

    Article  ADS  Google Scholar 

  8. M. Muraoka, W. Arnold, JSME Int. J. 44, 396–405 (2001)

    Article  Google Scholar 

  9. D.A. Mendels, M. Lowe, A. Cuenat, M.G. Cain, E. Vallejo, D. Ellis, F. Mendels, J. Micromech. Microeng. 16, 1720–1733 (2006)

    Article  ADS  Google Scholar 

  10. F.J. Espinoza-Beltran, K. Geng, J. Munoz Saldana, U. Rabe, S. Hirsekorn, W. arnold, New J. Phys. 11, 083034 (2009)

    Google Scholar 

  11. M. Müller, T. Schimmel, P. Häussler, H. Fettig, O. Müller, A. Albers, Surf. Interface Anal. 38, 1090–1095 (2006)

    Article  Google Scholar 

  12. A. Caron, U. Rabe, M. Reinstadtler, J.A. Turner, W. Arnold, App. Phys. Lett. 85, 26 (2004)

    Article  Google Scholar 

  13. Z. Parlak, F. Levent Degertekin, J. App. Phys. 103, 114910 (2008)

    Article  ADS  Google Scholar 

  14. Y. Song, B. Bhushan, Ultramicroscopy 106, 847–873 (2006)

    Article  Google Scholar 

  15. Y. Song, B. Bhushan, J. Phys, Condens. Matter 20, 225012 (2008)

    Article  ADS  Google Scholar 

  16. B. Drouin, J. Senicourt, F. Lavaste, G. Fezans, De la mécanique vibratoire classique à la méthode des éléments finis (AFNOR, Paris, 1993), p. 405

    Google Scholar 

  17. U. Rabe, E. Kester, W. Arnold, Surf. Interface Anal. 27, 386 (1999)

    Article  Google Scholar 

  18. K. Yamanaka, S. Nakano, Jpn. J. Appl. Phys. 35, 3787 (1996)

    Article  ADS  Google Scholar 

  19. N.A. burnham, A.J. Kulik, G. Gremaud, P.J. Gallo, F. Oulevey, Jpn. J. Vac. Sci. Technol. B 14, 794 (1996)

    Google Scholar 

  20. U. Rabe, K. Janser, W. Arnold, Rev. Sci. Instum. 67, 3281 (1996)

    Article  ADS  Google Scholar 

  21. R. Arinéro, G. Lévêque, Rev. Sci. Instrum. 74, 104 (2003)

    Article  ADS  Google Scholar 

  22. S. Cuénot, C. Frétigny, S. Demoustier-Champagne, B. Nysten, J. App. Phys. 93, 5650 (2003)

    Article  ADS  Google Scholar 

  23. P.E. Mazeran, J.L. Loubet, Tribol. Lett. 3, 125 (1997)

    Article  Google Scholar 

  24. E.L. Florin, M. Radmacher, B. Fleck, H.E. Gaub, Rev. Sci. Instrum. 65, 639 (1994)

    Article  ADS  Google Scholar 

  25. O. Piètrement, M. Troyon, Tribol. Lett. 9, 77 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Arinero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arinero, R., Lévêque, G. (2013). One-Dimensional Finite Element Modeling of AFM Cantilevers. In: Marinello, F., Passeri, D., Savio, E. (eds) Acoustic Scanning Probe Microscopy. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27494-7_4

Download citation

Publish with us

Policies and ethics