Skip to main content
Log in

Characterization of the nonlinear response of defective multi-DOF oscillators using the method of phase space topology (PST)

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Most engineered systems are nonlinear and exhibit phenomena that can only be predicted by nonlinear models. However, the application of model-based approaches for diagnostics has been constrained mostly to linearized or simplified models. This paper introduces a fundamentally new approach (“PST”) for characterization of nonlinear response of systems based on the topology of the phase space trajectory. The method uses the density distribution of the system states to quantify this topology and extracts features that can be used for system diagnostics. The various parameters of the PST method have been analyzed to explore the effectiveness of the method, and it has been employed in the non-trivial diagnostics problem of a multiple degree of freedom oscillator system with various defects occurring simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nelson, H.D., Nataraj, C.: Dynamics of a rotor system with a cracked shaft. J. Vib. Acoust. Stress Reliab Des. 108(2), 189–196 (1986)

    Article  Google Scholar 

  2. Sekhar, A.: Crack identification in a rotor system: a model-based approach. J. Sound Vib. 270(4), 887–902 (2004)

    Article  Google Scholar 

  3. Jain, J., Kundra, T.: Model based online diagnosis of unbalance and transverse fatigue crack in rotor systems. Mech. Res. Commun. 31(5), 557–568 (2004)

    Article  Google Scholar 

  4. Rabiei, E., Droguett, E.L., Modarres, M., Amiri, M.: Damage precursor based structural health monitoring and damage prognosis framework. In: Podofillini, L., Sudret, B., Stojadinovic, B., Zio, E., Kröger, W. (eds.) Safety and Reliability of Complex Engineered Systems, vol. ch. 304, pp. 2441–2449. CRC Press, Boca Raton (2015)

  5. Kwuimy, C.K., Samadani, M., Nataraj, C.: Preliminary diagnostics of dynamic systems from time series. In: ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. V006T10A029–V006T10A029, American Society of Mechanical Engineers (2014)

  6. Isermann, R.: Process fault detection based on modeling and estimation methods-a survey. Automatica 20(4), 387–404 (1984)

    Article  MATH  Google Scholar 

  7. Isermann, R.: Fault diagnosis of machines via parameter estimation and knowledge processing-tutorial paper. Automatica 29(4), 815–835 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu, X., Bellgardt, K.H.: On-line fault detection of flow-injection analysis systems based on recursive parameter estimation. Anal. Chimica Acta 313(3), 161–176 (1995)

    Article  Google Scholar 

  9. Dey, S., Biron, Z.A., Tatipamula, S., Das, N., Mohon, S., Ayalew, B., Pisu, P.: On-board thermal fault diagnosis of lithium-ion batteries for hybrid electric vehicle application, IFAC-PapersOnLine, vol. 48, no. 15, pp. 389 – 394, 2015. 4th IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling E-COSM 2015Columbus, Ohio, USA, 23-26 August (2015)

  10. Mevel, B., Guyader, J.L.: Routes to chaos in ball bearings. J. Sound Vib. 162(3), 471–487 (1993)

    Article  MATH  Google Scholar 

  11. Muller, P., Bajkowski, J., Soffker, D.: Chaotic motions and fault detection in a cracked rotor. Nonlinear Dyn. 5(2), 233–254 (1994)

    Google Scholar 

  12. Sankaravelu, A., Noah, S.T., Burger, C.P.: Bifurcation and chaos in ball bearings. ASME Appl. Mech. Div. Publ. 192, 313–313 (1994)

    Google Scholar 

  13. Yang, Y., Ren, X., Qin, W., Wu, Y., Zhi, X.: Analysis on the nonlinear response of cracked rotor in hover flight. Nonlinear Dyn. 61(1–2), 183–192 (2010)

    Article  MATH  Google Scholar 

  14. Kappaganthu, K., Nataraj, C.: Nonlinear modeling and analysis of a rolling element bearing with a clearance. Commun. Nonlinear Sci. Numer. Simul. 16(10), 4134–4145 (2011)

    Article  MATH  Google Scholar 

  15. Zhang, B., Li, Y.: Six degrees of freedom coupled dynamic response of rotor with a transverse breathing crack. Nonlinear Dyn. 78(3), 1843–1861 (2014)

  16. Wang, W., Wu, Z., Chen, J.: Fault identification in rotating machinery using the correlation dimension and bispectra. Nonlinear Dyn. 25(4), 383–393 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dubey, C., Kapila, V.: Detection and characterization of cracks in beams via chaotic excitation and statistical analysis. In: Banerjee, S., Mitra, M., Rondoni, L. (eds.) Applications of Chaos and Nonlinear Dynamics in Engineering, vol. 1, pp. 137–164. Springer, Berlin (2011). doi:10.1007/978-3-642-21922-1_5

  18. Iwaniec, J., Uhl, T., Staszewski, W.J., Klepka, A.: Detection of changes in cracked aluminium plate determinism by recurrence analysis. Nonlinear Dyn. 70(1), 125–140 (2012)

    Article  Google Scholar 

  19. Kwuimy, C.K., Samadani, M., Nataraj, C.: Bifurcation analysis of a nonlinear pendulum using recurrence and statistical methods: applications to fault diagnostics. Nonlinear Dyn. 76(4), 1963–1975 (2014)

  20. Ng, S.S., Cabrera, J., Tse, P., Chen, A., Tsui, K.: Distance-based analysis of dynamical systems reconstructed from vibrations for bearing diagnostics. Nonlinear Dyn. 80(1–2), 147–165 (2015)

    Article  Google Scholar 

  21. Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)

  22. Letellier, C., Le Sceller, L., Dutertre, P., Gouesbet, G., Fei, Z., Hudson, J.: Topological characterization and global vector field reconstruction of an experimental electrochemical system. J. Phys. Chem. 99(18), 7016–7027 (1995)

  23. Letellier, C., Gouesbet, G., Rulkov, N.: Topological analysis of chaos in equivariant electronic circuits. Int. J. Bifurc. Chaos 6(12b), 2531–2555 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lefranc, M.: The topology of deterministic chaos: stretching, squeezing and linking. NATO Secur. Through Sci. Ser D Inf. Commun. Secur. 7, 71 (2007)

    MathSciNet  Google Scholar 

  25. Carroll, T.: Attractor comparisons based on density. Chaos Interdiscip. J. Nonlinear Sci. 25(1), 013111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tufillaro, N., Holzner, R., Flepp, L., Brun, E., Finardi, M., Badii, R.: Template analysis for a chaotic NMR laser. Phys. Rev. A 44(8), R4786 (1991)

    Article  Google Scholar 

  27. King, G.P., Jones, R., Broomhead, D.: Phase portraits from a time series: a singular system approach. Nucl Phys B-Proc. Suppl. 2, 379–390 (1987)

    Article  Google Scholar 

  28. Samadani, M., Kwuimy, C.K., Nataraj, C.: Model-based fault diagnostics of nonlinear systems using the features of the phase space response. Commun. Nonlinear Sci. Numer. Simul. 20(2), 583–593 (2015)

    Article  Google Scholar 

  29. Samadani, M., Kwuimy, C.K., Nataraj, C.: Diagnostics of a nonlinear pendulum using computational intelligence. In: ASME 2013 Dynamic Systems and Control Conference, American Society of Mechanical Engineers (2013)

  30. “ECP rectilinear plant.” http://www.ecpsystems.com/controls_recplant.htm/. (Online; accessed 29-June-2015)

Download references

Acknowledgments

This work is supported by the US Office of Naval Research under the grant ONR N00014-13-1-0485 with Mr. Anthony Seman III and Captain Lynn Petersen as the Program Managers. We deeply appreciate this support and are humbled by ONR’s enthusiastic recognition of the importance of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Samadani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadani, M., Kwuimy, C.A.K. & Nataraj, C. Characterization of the nonlinear response of defective multi-DOF oscillators using the method of phase space topology (PST). Nonlinear Dyn 86, 2023–2034 (2016). https://doi.org/10.1007/s11071-016-3012-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3012-x

Keywords

Navigation