Skip to main content
Log in

Detection of changes in cracked aluminium plate determinism by recurrence analysis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paper investigates changes in determinism of undamaged and cracked aluminium plates with respect to excitation frequencies. Harmonic excitation of frequencies corresponding to structural resonances has been used to vibrate the plates. Vibration responses have been analysed using recurrence plots and recurrence quantification analysis. The smallest sufficient embedding dimension has been estimated using the false nearest neighbour’s algorithm. Mutual information analysis has been applied to determine the relevant time delays. The results demonstrate that performed analysis indicates changes in dynamic behaviour of the plates with respect to various excitation frequencies and crack modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Cawley, P., Adams, R.D.: The locations of defects in structures from measurements of natural frequencies. J. Strain Anal. 14, 49–57 (1979)

    Article  Google Scholar 

  2. Adams, D.E., Nataraju, M.: A nonlinear dynamical systems framework for structural diagnosis and prognosis. Int. J. Eng. Sci. 40, 1919–1941 (2002)

    Article  Google Scholar 

  3. Salawu, O.S.: Detection of structural damage through changes in frequency: a review. Eng. Struct. 19, 718–723 (1997)

    Article  Google Scholar 

  4. Doebling, S.W., Farrar, C.R., Prime, M.B., Shevitz, D.W.: Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. Los Alamos National Laboratory report LA-13070-MS (1996)

  5. Farrar, C.R., Doebling, S.W., Cornwell, P.J., Straser, E.G.: Variability of modal parameters measured on the Alamosa Canyon bridge. In: Proc. 15th Int. Modal Anal. Conf., Orlando, FL, pp. 257–263 (1997)

    Google Scholar 

  6. Staszewski, W.J.: Ultrasonic/guided waves for structural health monitoring. Key Eng. Mater. 293–294, 49–62 (2005)

    Article  Google Scholar 

  7. Jhang, K.: Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. J. Precis. Eng. Manuf. 10, 123–135 (2009)

    Article  Google Scholar 

  8. Qiu, Q., Xu, C., Wu, B.: Structural damage detection through chaotic interrogation and attractor analysis. Adv. Mater. Res. 163–167, 2515–2520 (2011)

    Google Scholar 

  9. Ghafari, S.H., Golnavaghi, F., Ismail, F.: Effects of localized faults on chaotic vibration of rolling element bearings. Nonlinear Dyn. 53, 287–301 (2008)

    Article  MATH  Google Scholar 

  10. Nichols, J.M., Trickey, S.T., Todd, M.D., Virgin, L.N.: Structural health monitoring through chaotic interrogation. Meccanica 38, 239–250 (2003)

    Article  MATH  Google Scholar 

  11. Yin, S.H., Epureanu, B.I.: Nonlinear feedback excitation for system interrogation by bifurcation morphing. AIAA J. 46, 2058–2065 (2008)

    Article  Google Scholar 

  12. Yin, S.H., Epureanu, B.I.: Enhanced nonlinear dynamics and monitoring bifurcation morphing for the identification of parameter variations. J. Fluids Struct. 21, 543–559 (2005)

    Article  Google Scholar 

  13. Staszewski, W.J.: Wavelets for Mechanical and Structural Damage Detection. Monograph 510/1469/2000. Studia, Materialy. Polish Academy of Science Press, Warsaw (2000)

    Google Scholar 

  14. Nichols, J.M., Trickey, S.T., Seaver, M.: Damage detection using multivariate recurrence quantification analysis. Mech. Syst. Signal Process. 20, 421–437 (2006)

    Article  Google Scholar 

  15. Poincaré, H.: Sur la probleme des trios corps et les equations de la dynamique. Acta Math. 13, 1–27 (1890)

    MATH  Google Scholar 

  16. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  17. Eckmann, J.P., Oliffson, K.S., Ruelle, D.: Recurrence plots of dynamical systems. Europhys. Lett. 5, 973–977 (1987)

    Article  Google Scholar 

  18. Zbilut, J.P., Giuliani, A., Weber, C.L.: Recurrence quantification analysis and principal components in the detection of short complex signals. Phys. Lett. A 237, 131–135 (1998)

    Article  Google Scholar 

  19. Zbilut, J.P., Weber, C.L.: Embedding and delays as derived from quantification of recurrence plot. Phys. Lett. A 171, 199–203 (1992)

    Article  Google Scholar 

  20. Thiel, M., Romano, M.C., Kurths, J.: How much information is contained in a recurrence plot? Phys. Lett. A 330, 343–349 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marwan, N., Kurths, J.: Line structures in recurrence plots. Phys. Lett. A 336, 349–357 (2005)

    Article  MATH  Google Scholar 

  22. Ngamga, E.J., Nandi, A., Ramaswamy, R., Romano, M.C., Thiel, M., Kurths, J.: Recurrences of strange attractors. Pramana J. Phys. 70, 1039–1045 (2008)

    Article  Google Scholar 

  23. Awrejcewicz, J., Krysko, V.A.: Chaos in Structural Mechanics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  24. Elwakil, A.S., Soliman, A.M.: Mathematical models of twin-T, Wien-bridge and family of minimum component electronic chaos generators with demonstrative recurrence plots. Chaos Solitons Fractals 10, 1399–1411 (1999)

    Article  MATH  Google Scholar 

  25. Nichols, J.M., Trickey, S.T., Seaver, M.: Damage detection using multivariate recurrence analysis. Mech. Syst. Signal Process. 20, 421–437 (2006)

    Article  Google Scholar 

  26. Fontaine, S., Dia, S., Renner, M.: Nonlinear friction dynamics on fibrous materials application to the characterization of surface quality. Part II: local characterization of phase space by recurrence plots. Nonlinear Dyn (online first 19.02.2011). doi:10.1007/s11071-011-9968-7

  27. Kurths, J., Schwarz, U., Sonett, C.P., Parlitz, U.: Testing nonlinearity in radiocarbon data. Nonlinear Process. Geophys. 1, 72–75 (1994)

    Article  Google Scholar 

  28. Zolotova, N.V., Ponyavin, D.I.: Phase asynchrony of the north-south sunspot activity. Astron. Astrophys. 449, L1–L4 (2006)

    Article  Google Scholar 

  29. Manetti, C., Giuliani, A., Ceruso, M.A., Webber, C.L., Zbilut, J.P.: Recurrence analysis of hydration effects o nonlinear protein dynamics: multiplicative scaling and additive processes. Phys. Lett. A 281, 317–323 (2001)

    Article  Google Scholar 

  30. Giuliani, A., Manetti, C.: Hidden pecularities in the potential energy time series of a tripeptide highlighted by a recurrence plot analysis: a molecular dynamics simulation. Phys. Rev. E 53, 6336–6340 (1996)

    Article  Google Scholar 

  31. Marwan, N., Thiel, M., Nowaczyk, N.R.: Cross recurrence plot based synchronization of time series. Nonlinear Process. Geophys. 9, 325–331 (2002)

    Article  Google Scholar 

  32. Zbilut, J.P., Koebbe, M., Loeb, H., Mayer-Kress, G.: Use of recurrence plots in the analysis of heart beat intervals. In: Proc. IEEE Conf. Comput. Cardiol. 1990, pp. 263–266. IEEE Computer Society Press, Chicago (1991)

    Chapter  Google Scholar 

  33. Thomasson, N., Hoeppner, T.J., Webber, C.L., Zbilut, J.P.: Recurrence quantification in epileptic EEGs. Phys. Lett. A 279, 94–101 (2001)

    Article  Google Scholar 

  34. Hołyst, J.A., Zebrowska, M., Urbanowicz, K.: Observations of deterministic chaos in financial time series by recurrence plots, can one control chaotic economy? Eur. Phys. J. B 20, 531–535 (2001)

    Article  Google Scholar 

  35. Worden, K., Farrar, C.: Improving excitations for active sensing in structural health monitoring via evolutionary algorithms. J. Vib. Acoust. 129, 784–802 (2007)

    Article  Google Scholar 

  36. Litak, G., Sawicki, J.T., Kasperek, R.: Cracked rotor detection by recurrence plots. Nondestruct. Test. Eval. 24, 347–381 (2009)

    Article  Google Scholar 

  37. Masri, S.F., Caughey, T.K.: A nonparametric identification technique for nonlinear dynamic problems. J. Appl. Mech. 46, 433–447 (1979)

    Article  MATH  Google Scholar 

  38. Crawley, E.F., O’Donnell, K.J.: Identification of nonlinear system parameters in joints using the force-state mapping technique. AIAA Pap. 86(1013), 659–667 (1986)

    Google Scholar 

  39. Crawley, E.F., Aubert, A.C.: Identification of nonlinear structural elements by force-state mapping. AIAA J. 24, 155–162 (1986)

    Article  Google Scholar 

  40. Duym, S., Schoukens, J., Guillaume, P.: A local restoring surface method. Int. J. Anal. Exp. Modal Anal. 11, 116–132 (1996)

    Google Scholar 

  41. Worden, K., Tomlinson, G.R.: Application of restoring force method to nonlinear elements. In: Proc. 7th Int. Modal Anal. Conf., Las Vegas, NV, January 30–February 2, pp. 1347–1355 (1989)

    Google Scholar 

  42. Bouc, R.: Forced vibrations of mechanical systems with hysteresis. In: Proc. 4th Conf. Non-Linear Oscill., Prague, September 5–9, vol. 5, p. 315 (1967)

    Google Scholar 

  43. Wen, Y.K.: Method for random vibration of hysteretic systems. J. Eng. Mech. Div., Proc. Am. Soc. Civ. Eng. 102 (1976)

  44. Dabrowski, A.: Estimation of the largest Lyapunov exponent from the perturbation vector and its derivative product. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-9977-6

    Google Scholar 

  45. Yang, C., Qiong Wu, C.: A robust method on estimation of Lyapunov exponents from a noisy time series. Nonlinear Dyn. (2010). doi:10.1007/s11071-011-9860-x

    Google Scholar 

  46. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. University Press, Cambridge (1997)

    MATH  Google Scholar 

  47. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110, 43–50 (1997)

    Article  MATH  Google Scholar 

  48. Marwan, N.: Cross recurrence plot toolbox for Matlab, reference manual, version 5.15, release 28.6. http://tocsy.pik-potsdam.de (2010). Accessed 26 March 2010

  49. Awrejcewicz, J., Krysko, V.A.: Nonclassical Thermoplastic Problems in Nonlinear Dynamics of Shells. Springer, Berlin (2003)

    Book  Google Scholar 

  50. Klepka, A., Staszewski, W.J., Jenal, R.B., Szwedo, M., Iwaniec, J., Uhl, T.: Nonlinear acoustics for fatigue crack detection—experimental investigations of vibro-acoustic wave modulations. SHM. doi:10.1177/1475921711414236

  51. Awrejcewicz, J., Krysko, V.A., Vakakis, A.F.: Nonlinear Dynamics of Continuous Elastic Systems. Springer, Berlin (2004)

    MATH  Google Scholar 

  52. Awrejcewicz, J., Andrianov, I.V., Manevitch, L.I.: Asymptotical Mechanics of Thin Walled Structures. A Handbook. Springer, Berlin (2004)

    Google Scholar 

  53. Klepka, A., Jenal, R.B., Szwedo, M., Staszewski, W.J., Uhl, T.: Experimental analysis of vibroacoustic modulations in nonlinear acoustics used for fatigue crack detection. In: Proc. 5th EWSHM 2010, Sorento, pp. 541–546 (2010)

    Google Scholar 

  54. Jenal, R.B., Staszewski, W.J., Klepka, A., Uhl, T.: Structural damage detection using laser vibrometer. In: Proc. 2nd Int. Symp. NDT Aerosp., Hamburg, pp. 1–8 (2010)

    Google Scholar 

  55. Delsanto, P.P.: Universality of Nonclassical Nonlinearity. Springer, New York (2010)

    Google Scholar 

  56. Haroon, M., Adams, D.E., Luk, Y.W.: A technique for estimating linear parameters of an automotive suspension system using nonlinear restoring force excitation in the absence of an input measurement. J. Vib. Acoust. 127, 483–492 (2005)

    Article  Google Scholar 

  57. Facchini, A., Kantz, H., Tiezzi, E.: Recurrence plot analysis of nonstationary data: the understanding of curved patterns. Phys. Rev. E 72, 021915 (2005)

    Article  MathSciNet  Google Scholar 

  58. Kęcik, K., Warmiński, J.: Analysis of chaotic and regular motion of an autoparametric system by recurrence plots application. In: XXIV Symp. Vibrations in Physical Systems, Poznań–Będlewo, May 12–15, pp. 221–226. Poznan University of Technology, Poznan (2010)

    Google Scholar 

Download references

Acknowledgements

The work presented in the paper was founded by the Foundation for Polish Science (under programme MISTRZ).

The authors are grateful to Professor Jerzy Warmiński from Lublin University of Technology, Poland, and Professor Keith Worden from Sheffield University, UK, for valuable comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Iwaniec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwaniec, J., Uhl, T., Staszewski, W.J. et al. Detection of changes in cracked aluminium plate determinism by recurrence analysis. Nonlinear Dyn 70, 125–140 (2012). https://doi.org/10.1007/s11071-012-0436-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0436-9

Keywords

Navigation