Skip to main content
Log in

Relative fractional dynamics of stock markets

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper analyses motion of stock markets (SM) in the perspective of fractional calculus and introduces the concept of relative fractional dynamics. The SM are characterized by long-range correlations and persistent memory. These features are found in natural and artificial systems and are well modelled by means of the tools of fractional calculus. The time series of daily closing prices of 11 SM for the period 9 July 1987 to 22 April 2016 are interpreted as motion trajectories and their distances analysed through the Fourier transform. The amplitude spectra are approximated by power law functions, characterizing the relative motion of the financial indices and their slow tendency to synchronize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods, vol. 3. World Scientific Publishing, Boston (2012)

    MATH  Google Scholar 

  3. Bharathi, A., Dong, J.: Feedrate optimization for smooth minimum-time trajectory generation with higher order constraints. Int. J. Adv. Manuf. Technol. 82(5–8), 1029–1040 (2016)

    Article  Google Scholar 

  4. Calderón, A.J., Vinagre, B.M., Feliu, V.: Fractional order control strategies for power electronic buck converters. Sig. Process. 86(10), 2803–2819 (2006)

    Article  MATH  Google Scholar 

  5. Cha, S.H.: Comprehensive survey on distance/similarity measures between probability density functions. City 1(2), 1 (2007)

    Google Scholar 

  6. Cox, T.F., Cox, M.A.: Multidimensional Scaling. CRC Press, Boca Raton (2000)

    MATH  Google Scholar 

  7. Davison, M.L.: Multidimensional Scaling, vol. 85. Wiley, New York (1983)

    MATH  Google Scholar 

  8. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Filer, L., Selover, D.D.: Why can weak linkages cause international stock market synchronization? The mode-locking effect. Int. J. Financ. Res. 5(3), 20–42 (2014)

    Article  Google Scholar 

  10. Grzesikiewicz, W., Wakulicz, A., Zbiciak, A.: Non-linear problems of fractional calculus in modeling of mechanical systems. Int. J. Mech. Sci. 70, 90–98 (2013)

    Article  Google Scholar 

  11. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  12. Hilliard, J.E.: The relationship between equity indices on world exchanges. J. Finance 34(1), 103–114 (1979)

    Article  Google Scholar 

  13. Huang, W.Q., Zhuang, X.T., Yao, S.: A network analysis of the Chinese stock market. Phys. A 388(14), 2956–2964 (2009)

    Article  Google Scholar 

  14. Huberman, B.A., Pirolli, P.L., Pitkow, J.E., Lukose, R.M.: Strong regularities in world wide web surfing. Science 280(5360), 95–97 (1998)

    Article  Google Scholar 

  15. Johnson, N.F., Jefferies, P., Hui, P.M.: Financial Market Complexity. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  16. Lim, G., Kim, S., Kim, J., Kim, P., Kang, Y., Park, S., Park, I., Park, S.B., Kim, K.: Structure of a financial cross-correlation matrix under attack. Phys. A 388(18), 3851–3858 (2009)

    Article  Google Scholar 

  17. Lopes, A.M., Machado, J.T.: Dynamical behaviour of multi-particle large-scale systems. Nonlinear Dyn. 69(3), 913–925 (2012)

    Article  MathSciNet  Google Scholar 

  18. Lopes, A.M., Machado, J.T.: Analysis of temperature time-series: embedding dynamics into the MDS method. Commun. Nonlinear Sci. Numer. Simul. 19(4), 851–871 (2014)

    Article  Google Scholar 

  19. Lopes, A.M., Tenreiro Machado, J., Galhano, A.M.: Multidimensional scaling visualization using parametric entropy. Int. J. Bifurc. Chaos 25(14), 1540,017 (2015)

    Article  MATH  Google Scholar 

  20. Lopes, A.M., Machado, J.T., Pinto, C., Galhano, A.M.: Fractional dynamics and MDS visualization of earthquake phenomena. Comput. Math. Appl. 66(5), 647–658 (2013)

    Article  MathSciNet  Google Scholar 

  21. Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351(1), 218–223 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luo, Y., Chen, Y.: Fractional Order Motion Controls. Wiley, Chichester (2013)

    Google Scholar 

  23. Machado, J., Lopes, A.M.: Analysis of natural and artificial phenomena using signal processing and fractional calculus. Fract. Calc. Appl. Anal. 18(2), 459–478 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Machado, J., Mata, M.E., Lopes, A.M.: Fractional state space analysis of economic systems. Entropy 17(8), 5402–5421 (2015)

    Article  Google Scholar 

  25. Machado, J.A.T., Lopes, A.M.: Analysis and visualization of seismic data using mutual information. Entropy 15(9), 3892–3909 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Machado, J.T.: Relativistic time effects in financial dynamics. Nonlinear Dyn. 75(4), 735–744 (2014)

    Article  MathSciNet  Google Scholar 

  27. Machado, J.T., Lopes, A.M.: The persistence of memory. Nonlinear Dyn. 79(1), 63–82 (2015)

    Article  Google Scholar 

  28. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586–1593 (2010)

  29. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)

  30. Mantegna, R.N., Stanley, H.E.: Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  31. Marszalek, W., Amdeberhan, T.: Memristive jounce (Newtonian) circuits. Appl. Math. Model. 40(4), 2619–2624 (2016)

    Article  MathSciNet  Google Scholar 

  32. Metzler, R., Schick, W., Kilian, H.G., Nonnenmacher, T.F.: Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys. 103(16), 7180–7186 (1995)

    Article  Google Scholar 

  33. Momani, S., Odibat, Z.: Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett. A 355(4), 271–279 (2006)

    Article  MATH  Google Scholar 

  34. Müller, A.: Higher derivatives of the kinematic mapping and some applications. Mech. Mach. Theory 76, 70–85 (2014)

    Article  Google Scholar 

  35. Ortigueira, M.D.: Fractional calculus for scientists and engineers, vol. 84. Springer, Dordrecht (2011)

    MATH  Google Scholar 

  36. Pinto, C., Mendes Lopes, A., Machado, J.: A review of power laws in real life phenomena. Commun. Nonlinear Sci. Numer. Simul. 17(9), 3558–3578 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schot, S.H.: Jerk: the time rate of change of acceleration. Am. J. Phys. 46(11), 1090–1094 (1978)

    Article  Google Scholar 

  38. Tarasov, V.E.: Review of some promising fractional physical models. Int. J. Mod. Phys. B 27(9), 1330,005 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Machado, Tenreiro, Lopes, A.M., Galhano, A.M.: Multidimensional scaling visualization using parametric similarity indices. Entropy 17(4), 1775–1794 (2015)

    Article  MATH  Google Scholar 

  40. Visser, M.: Jerk, snap and the cosmological equation of state. Class. Quantum Gravity 21(11), 2603 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Viviani, P., Flash, T.: Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. J. Exp. Psychol. Hum. Percept. Perform. 21(1), 32–53 (1995)

    Article  Google Scholar 

  42. Vukea, P.R., Willows-Munro, S., Horner, R.F., Coetzer, T.H.: Phylogenetic analysis of the polyprotein coding region of an infectious south african bursal disease virus (IBDV) strain. Infect. Genet. Evol. 21, 279–286 (2014)

    Article  Google Scholar 

  43. Walti, S.: The macroeconomic determinants of stock market synchronization. J. Int. Banking Law 11(10), 436–441 (2005)

    Google Scholar 

  44. Yang, X.J., Machado, J.T., Hristov, J.: Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow. Nonlinear Dyn. 84(1), 3–7 (2016)

    Article  MathSciNet  Google Scholar 

  45. Yang, X.J., Srivastava, H.: An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 29(1), 499–504 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the Yahoo Finance (https://finance.yahoo.com/) for the dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António M. Lopes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenreiro Machado, J.A., Lopes, A.M. Relative fractional dynamics of stock markets. Nonlinear Dyn 86, 1613–1619 (2016). https://doi.org/10.1007/s11071-016-2980-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2980-1

Keywords

Navigation