Skip to main content
Log in

Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burgers, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  MathSciNet  Google Scholar 

  2. Burgers, J.M.: The Nonlinear Diffusion Equation. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  3. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (2011)

    MATH  Google Scholar 

  4. Cole, J.D.: On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9(3), 225–236 (1951)

    MathSciNet  MATH  Google Scholar 

  5. Hopf, E.: The partial differential equation u t + uu x = u xx. Commun. Pure Appl. Math. 3, 201–230 (1950)

    Article  MathSciNet  Google Scholar 

  6. Lax, P.D.: Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10, 537–566 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  7. Avrin, J.D.: The generalized Burgers’ equation and the Navier-Stokes equation in Rn with singular initial data. Proc. Am. Math. Soc. 101(1), 29–40 (1987)

    MathSciNet  MATH  Google Scholar 

  8. Hamanaka, M., Toda, K.: Noncommutative Burgers equation. J. Phys. A 36(48), 11981 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Haselwandter, C., Vvedensky, D.D.: Fluctuations in the lattice gas for Burgers’ equation. J. Phys. A 35(41), L579 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Da Prato, G., Debussche, A., Temam, R.: Stochastic Burgers’ equation. NoDEA 1(4), 389–402 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gurbatov, S.N., Simdyankin, S.I., Aurell, E., Frisch, U., Toth, G.: On the decay of Burgers turbulence. J. Fluid Mech. 344, 339–374 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Musha, T., Higuchi, H.: Traffic current fluctuation and the Burgers equation. Jpn. J. Appl. Phys. 17(5), 811–816 (1978)

    Article  Google Scholar 

  13. Blackstock, D.T.: Generalized Burgers equation for plane waves. J. Acoustical. Soc. Am. 77(6), 2050–2053 (1985)

    Article  MATH  Google Scholar 

  14. Caldwell, J., Wanless, P., Cook, A.E.: A finite element approach to Burgers’ equation. Appl. Math. Mod. 5(3), 189–193 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kakuda, K., Tosaka, N.: The generalized boundary element approach to Burgers’ equation. Int. J. Numer. Meth. Eng. 29(2), 245–261 (1990)

    Article  MATH  Google Scholar 

  16. Wazwaz, A.M.: Multiple-front solutions for the Burgers equation and the coupled Burgers equations. Appl. Math. Comput. 190(2), 1198–1206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  18. Podlubny, I.: Fractional Differential Equations. Academic Press, Waltham (1999)

    MATH  Google Scholar 

  19. West, B., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, Berlin (2003)

    Book  Google Scholar 

  20. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)

    MATH  Google Scholar 

  21. Atangana, A.: Convergence and stability analysis of a novel iteration method for fractional biological population equation. Neural Comput. Appl. 25(5), 1021–1030 (2014)

    Article  MathSciNet  Google Scholar 

  22. Biler, P., Funaki, T., Woyczynski, W.A.: Fractal Burgers equations. J. Differ. Equ. 148(1), 9–46 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Alibaud, N., Imbert, C., Karch, G.: Asymptotic properties of entropy solutions to fractal Burgers equation. SIAM J. Math. Anal. 42(1), 354–376 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Karch, G., Miao, C., Xu, X.: On convergence of solutions of fractal Burgers equation toward rarefaction waves. SIAM J. Math. Anal. 39(5), 1536–1549 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sugimoto, N.: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 225, 631–653 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chan, C.H., Czubak, M., Silvestre, L.: Eventual regularization of the slightly supercritical fractional Burgers equation. Discrete Contin. Dyn. Syst. 27(2), 847–861 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yıldırım, A., Mohyud-Din, S.T.: Analytical approach to space-and time-fractional burgers equations. Chin. Phys. Letts. 27(9), 090501 (2010)

    Article  Google Scholar 

  28. Momani, S.: Non-perturbative analytical solutions of the space-and time-fractional Burgers equations. Chaos Solitons Fractals 28(4), 930–937 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, Y., Agrawal, O.P.: Numerical solutions and analysis of diffusion for new generalized fractional Burgers equation. Fract. Calc. Appl. Anal. 16(3), 709–736 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu, G.C., Baleanu, D.: Variational iteration method for the Burgers’ flow with fractional derivatives–new Lagrange multipliers. Appl. Math. Mod. 37(9), 6183– 6190 (2013)

    Article  MathSciNet  Google Scholar 

  31. Chen, Y., An, H.L.: Numerical solutions of coupled Burgers equations with time-and space-fractional derivatives. Appl. Math. Comput. 200(1), 87–95 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Khan, N.A., Ara, A., Mahmood, A.: Numerical solutions of time-fractional Burgers equations: a comparison between generalized differential transformation technique and homotopy perturbation method. Inter. J. Numer. Meth. Heat Fluid Flow 22(2), 175–193 (2012)

    Article  MathSciNet  Google Scholar 

  33. Yang, X.J.: Advanced Local Fractional Calculus and Its Applications. World Science, New York (2012)

    Google Scholar 

  34. Yang, X.J., Srivastava, H.M., He, J.H., Baleanu, D.: Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Letts. A 377(28), 1696–1700 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, X.J., Baleanu, D., Zhong, W.P.: Approximate solutions for diffusion equations on cantor space-time. Proc. Rom. Acad. Ser. A 14(2), 127–133 (2013)

    MathSciNet  Google Scholar 

  36. Zhang, Y., Baleanu, D., Yang, X.J.: On a local fractional wave equation under fixed entropy arising in fractal hydrodynamics. Entropy 16(12), 6254–6262 (2014)

    Article  MathSciNet  Google Scholar 

  37. Wang, L. F., Yang, X. J., Baleanu, D., Cattani, C., Zhao, Y.: Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws. Abstr. Appl. Anal. 2014(635760), 5 (2014)

  38. Yang, X.J., Baleanu, D., Machado, J.A.T.: Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. Bound Value Probl. 2013(1), 1–16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, H.Y., He, J.H., Li, Z.B.: Fractional calculus for nanoscale flow and heat transfer. Inter. J. Numer. Meth. Heat Fluid Flow 24(6), 1227–1250 (2014)

    Article  MathSciNet  Google Scholar 

  40. Kolwankar, K.M., Gangal, A.D.: Hölder exponents of irregular signals and local fractional derivatives. Pramana 48(1), 49–68 (1997)

    Article  Google Scholar 

  41. Babakhani, A., Daftardar-Gejji, V.: On calculus of local fractional derivatives. J. Math. Anal. Appl. 270(1), 66–79 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Carpinteri, A., Chiaia, B., Cornetti, P.: The elastic problem for fractal media: basic theory and finite element formulation. Comput. Struct. 82(6), 499–508 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, XJ., Machado, J.A.T. & Hristov, J. Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow. Nonlinear Dyn 84, 3–7 (2016). https://doi.org/10.1007/s11071-015-2085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2085-2

Keywords

Navigation