Skip to main content
Log in

A note on adaptive observer for the Lur’e differential inclusion system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper considers the adaptive observer design problem for the Lur’e differential inclusion system with unknown parameters. Different from the current work, the proposed observer does not hold any set-valued mapping and the uncertain parameters can also be identified. Firstly, the adaptive observer is designed for the Lur’e differential inclusion system, and it is proved to be valid by Lyapunov stability theory. Then, based on the canonical form of the system matrix, the sufficient and necessary condition for one assumption is presented in both SISO and MIMO cases. Finally, numerical examples are simulated to show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aubin, J., Cellina, A.: Differential Inclusions: Set-valued Maps and Viability Theory. Springer, New York (1984)

    Book  MATH  Google Scholar 

  2. Deimling, K.: Multivalued Differential Equations. De Gruyter Series in Nonlinear Analysis and Applications. De Gruyter, Berlin (1992)

    Google Scholar 

  3. Boyd, S., Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequlities in System and Control Theory. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  4. Smirnov, G.: Introduction to the Theory of Differential Inclusions. Graduate Studies in Mathematics. SIAM, Phliadelphia (2002)

    Google Scholar 

  5. Agrawal, J., Moudgalya, K., Pani, A.: Sliding motion and stability of a class of discontinuous dynamical systems. Nonlinear Dyn. 37, 151–168 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rakkiyappan, R., Velmurugan, G., Cao, J.: Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays. Nonlinear Dyn. 78, 2823–2836 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lur’e, A.: Some Nonlinear Problem in the Theory of Automatic Control. Her Majesty’s Stationary Office, London (1957)

    Google Scholar 

  8. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems,Applications in Mechanics and Electronics. Springer, Berlin (2008)

    MATH  Google Scholar 

  9. Leine, R., Van Campen, D., Van De Vrande, B.: Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn. 23, 105–164 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wouw, N., Leine, R.: Attractivity of equilibrium sets of systems with dry friction. Nonlinear Dyn. 35, 19–39 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Forti, M., Nistri, P., Papini, D.: Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Trans. Neural Netw. 16, 1449–1463 (2005)

    Article  Google Scholar 

  12. Duan, L., Huang, L., Guo, Z.: Stability and almost periodicity for delayed high-order Hopfield neural networks with discontinuous activations. Nonlinear Dyn. 77, 1469–1484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heemels, W., Schumacher, J., Weiland, S.: Well-posedness of linear complementarity systems. In: Proceedings of 38th IEEE CDC. Arizona, pp. 3037–3042 (1999)

  14. Brogliato, B.: Some perspectives on the analysis and control of complementarity systems. IEEE Trans. Automat. Control 48, 918–935 (2003)

    Article  MathSciNet  Google Scholar 

  15. Bruin, J., Doris, A., Wouw, N., Heemels, W., Nijmeijer, H.: Control of mechanical motion systems with non-collocation of actuation and friction: a Popov criterion approach for input-to-state stability and set-valued nonlinearities. Automatica 45, 405–415 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jayawardhana, B., Logemann, H., Ryan, E.: Input-to-state stability of differential inclusions with applications to hysteretic and quantized feedback systems. SIAM J. Control Optim. 48, 1031–1054 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Osorio, M., Moreno, J.: Dissipative design of observers for multivalued nonlinear systems. In: Proceedings of 45th IEEE CDC. San Diego, pp. 5400–5405 (2006)

  18. Doris, A., Juloski, A., Mihajlovic, N., Heemels, W., Wouw, N., Nijmeijer, H.: Observer designs for experimental non-smooth and discontinuous systems. IEEE Trans. Control Syst. Technol. 16, 1323–1332 (2008)

    Article  Google Scholar 

  19. Brogliato, B., Heemels, W.: Observer design for Lur’e systems with multivalued mappings: a passivity approach. IEEE Trans. Automat. Control 54, 1996–2001 (2009)

    Article  MathSciNet  Google Scholar 

  20. Brogliato, B., Goeleven, D.: Well-posedness, stability and invariance results for a class of multivalued Lur’e dynamical systems. Nonlinear Anal. Theor. 74, 195–212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, J., Han, Z., Cai, X.: Note on observer for Lur’e differential inclusion systems. IET Control Theory Appl. 5, 1939–1944 (2011)

    Article  MathSciNet  Google Scholar 

  22. Huang, J., Han, Z., Cai, X., Liu, L.: Adaptive full-order and reduced-order observers for the Lur’e differential inclusion system. Commun. Nonlinear Sci. Numer. Simulat. 16, 2869–2879 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, J., Han, Z.: Adaptive non-fragile observer design for the uncertain Lur’e differential inclusion system. Appl. Math. Model. 37, 72–81 (2013)

    Article  MathSciNet  Google Scholar 

  24. Zhang, J., Han, Z., Zhu, F., Zhang, W.: Further results on adaptive full-order and reduced-order observers for Lur’e differential inclusions. Commun. Nonlinear Sci. Numer. Simulat. 19, 1582–1590 (2014)

    Article  MathSciNet  Google Scholar 

  25. Hu, T.: Nonlinear control design for linear differential inclusions via convex hull of quadratics. Automatica 43, 685–692 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, Q.: Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems. IEEE Trans. Automat. Control 47, 525–529 (2002)

    Article  MathSciNet  Google Scholar 

  27. Rugh, W.: Linear System Theory. Prentice Hall, New Jersey (1996)

    MATH  Google Scholar 

  28. Wolovich, W.: Linear Multivariable Systems. Springer, New York (1974)

    Book  MATH  Google Scholar 

  29. Han, Z.: Adaptive Control. Tsinghua University Press, Beijing (1995)

    Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (61403267,61503107), Natural Science Foundation of Jiangsu Province of China (BK20130322), Zhejiang Provincial Natural Science Foundation of China (LY16F030005), Natural Science Fund for Colleges and Universities in Jiangsu Province (13KJB510032) and China Postdoctoral Science Foundation (2013M530268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Huang.

Appendix

Appendix

In this section, we present one method which can be used to determine whether one signal is persistently exciting.

Definition 5

Function \(u{:}[0,+\infty )\rightarrow R^{n}\) is called stationary signal if the following holds

$$\begin{aligned} \lim \limits _{T\rightarrow \infty }T^{-1}\int _{t}^{t+T}u(\tau )u^{T}(t+\tau )d\tau <\infty . \end{aligned}$$

The above limit is the function of t, and is called self-covariance matrix of u, denoted by \(R_{u}(t)\). Furthermore, the Fourier transformation of \(R_{u}(t)\) is defined by

$$\begin{aligned} S_{u}(\omega )=\int _{-\infty }^{\infty }R_{u}(\tau )\exp (-j\omega \tau )d\tau , \end{aligned}$$

which is spectral measure of u. A stationary signal is called k-th order multi-frequency if there exist at least k zeros of \(S_{u}(\omega )\) for \(\omega \in R\), and the nonzero real numbers are called subset of u.

Thus, we can obtain the following propositions. The proof is omitted.

Proposition 1

If \(u=c~(c\ne 0)\), then the subset contains only one element, i.e. it is first-order multi-frequency.

Proposition 2

If \(u=\sin \omega _{0}t~(\omega _{0}\ne 0)\), then the subset contains only two elements, i.e. it is second-order multi-frequency.

Proposition 3

If \(u=\sum \limits _{i=1}^{l}A_{i}\sin \omega _{i}t(A_{i}\ne 0,\omega _{i}\ne 0, \omega _{i}\ne \omega _{j},i\ne j)\), then the subset contains 2l elements, i.e. it is 2l-th order multi-frequency.

The following lemma is important, and it can be referred to [29].

Lemma 3

[29] Let \(y(s)=G(s)u(s)\), where \(G(s)\in R^{n\times l}\) is transfer function, then there exist n different real numbers \(\omega _{1},\omega _{2},\ldots , \omega _{n}\), such that \(G(j\omega _{1}),G(j\omega _{2}),\cdots ,G(j\omega _{n}) \) are linear independent, then y(t) is persistently exciting signal if and only if u is n-th order multi-frequency.

Thus, by Lemma 3, if f(yu) in the system (3) is n-th order multi-frequency, then \(\xi (t)\) is persistently exciting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zhang, J. & Han, Z. A note on adaptive observer for the Lur’e differential inclusion system. Nonlinear Dyn 86, 1227–1237 (2016). https://doi.org/10.1007/s11071-016-2959-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2959-y

Keywords

Navigation