Skip to main content

Luenberger Observer Design for Uncertainty Nonlinear Systems

  • Chapter
  • First Online:
New Perspectives and Applications of Modern Control Theory

Abstract

Most of the nonlinear observers require the nonlinear systems to be known. If the systems are partly unknown, model-free observers such as high-gain observers, sliding mode observers, and neural observers, can be applied. However, the performances of these observers are not satisfactory, for example, they are sensitive to measurement noise and they can only estimate the derivative of the output. In this chapter, we use the structure of Luenberger observers for partially unknown nonlinear systems. Using a Riccati differential equation, we design a time-varying observer gain such that the observer error is robust with respect to bounded uncertainties. Compared with the other robust nonlinear observers, this observer is simple and effective with respect to the uncertainties in the nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrieu, V., Praly, L.: On the existence of a Kazantzis-Kravaris/Luenberger observer. SIAM (2006). doi:10.1137/040617066

    MATH  Google Scholar 

  2. Andrieu, V., Praly, L., Astolfi, A.: High gain observers with updated gain and homogeneous correction terms. Automatica 45(2), 422–428 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernhard, P.: H\(\infty \)-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach. Birkhäuser, Basel (1991) Please check the edits made in References [3, 6, 15, 20], and correct if necessary

    Google Scholar 

  4. Chen, M., Ge, S.S.: Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer. IEEE Trans. Cybern. 43(4), 1213–1225 (2013). doi:10.1109/TSMCB.2012.2226577

    Article  Google Scholar 

  5. Desoer, C.A., Vidyasagar, M.: Feedback systems: input-output properties. SIAM (2009)

    Google Scholar 

  6. Dong, Y., Wang, H., Wang, Y.: Design of observers for nonlinear systems with H\(\infty \) performance analysis. Math. Methods Appl. Sci. 37(5), 718–725 (2014). doi:10.1002/mma.2830

    Article  MathSciNet  MATH  Google Scholar 

  7. Karagiannis, D., Carnevale, D., Astolfi, A.: Invariant manifold based reduced-order observer design for nonlinear systems. IEEE Trans. Autom. Control 53(11), 2602–2615 (2008). doi:10.1109/TAC.2008.2007045

    Article  MathSciNet  MATH  Google Scholar 

  8. Kazraji, S.M., Soflayi, R.B., Sharifian, M.B.B.: Sliding-mode observer for speed and position sensorless control of linear-PMSM. Electr. Control Commun. Eng. 5(1), 20–26 (2014)

    Google Scholar 

  9. Khalil, H.K.: Nonlinear Systems. Prentice-Hall, New Jersey (1996)

    Google Scholar 

  10. Khalil, H.K., Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control 24(6), 993–995 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Luenberger, D.G.: Observing the state of linear system. IEEE Trans. Mil. Electron 8(2), 74–80 (1964)

    Article  Google Scholar 

  12. Marconi, L., Praly, L., Isidori, A.: Output stabilization via nonlinear Luenberger observers. SIAM J. Control Optim. 45(6), 2277–2298 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Naifar, O., Boukettaya, G., Oualha, A., Ouali, A.: A comparative study between a high-gain interconnected observer and an adaptive observer applied to IM-based WECS. Eur. Phys. J. Plus 130(5), 1–13 (2015)

    Article  Google Scholar 

  14. Periasamy, V., Tade, M.: An adaptive non-linear observer for the estimation of temperature distribution in the planar solid oxide fuel cell. Journal (2013)

    Google Scholar 

  15. Pertew, A.M., Marquezz, H.J., Zhao, Q.: H\(\infty \) observer design for Lipschitz nonlinear systems. IEEE Trans. Autom. Control 51(7), 1211–1216 (2006). doi:10.1109/TAC.2006.878784

    Article  MathSciNet  MATH  Google Scholar 

  16. Poznyak, A.S., Sanchez, E., Palma, O., Yu, W.: Robust asymptotic neuro observer with time delay term. In: Proceedings of the 2000 IEEE International Symposium on Intelligent Control, 2000, pp. 19–24. IEEE (2000)

    Google Scholar 

  17. Prasov, A.A., Khalil, H.K.: A nonlinear high-gain observer for systems with measurement noise in a feedback control framework. IEEE Trans. Autom. Control 58(3), 569–580 (2013). doi:10.1109/TAC.2012.2218063

    Article  MathSciNet  MATH  Google Scholar 

  18. Resendiz, J., Yu, W., Fridman, L.: Two-stage neural observer for mechanical systems. IEEE Trans. Circuits Syst. II Express Br. 55(10), 1076–1080 (2008). doi:10.1109/TCSII.2008.2001962

  19. Solsona, J.A., Valla, M.I.: Disturbance and nonlinear Luenberger observers for estimating mechanical variables in permanent magnet synchronous motors under mechanical parameters uncertainties. IEEE Trans. Ind. Electron. 50(4), 717–725 (2003). doi:10.1109/TIE.2003.814866

    Article  Google Scholar 

  20. Stamnes, Ø.N., Aamo, O.M., Kaasa, G.O.: Adaptive redesign of nonlinear observers. IEEE Trans. Autom. Control 56(5), 1152–1157 (2011). doi:10.1109/TAC.2011.2107090

    Article  MathSciNet  MATH  Google Scholar 

  21. Tyukina, I.Y., Steurb, E., Nijmeijerc, H., Van Leeuwen, C.: Adaptive observers and parameter estimation for a class of systems nonlinear in the parameters. Automatica 49(8), 2409–2423 (2013)

    Article  MathSciNet  Google Scholar 

  22. Willems, J.C.: Least squares optimal control and algebraic Riccati equations. IEEE Trans. Autom. Control 16(6), 621–634 (1971). doi:10.1109/TAC.1971.1099831

    Article  MathSciNet  Google Scholar 

  23. Wimmer, H.K.: Monotonicity of maximal solutions of algebraic Riccati equations. Syst. Control Lett. 5(5), 317–319 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xingling, S., Honglum, W.: Trajectory linearization control based output tracking method for nonlinear uncertain system using linear extended state observer. Asian J. Control 18(1), 316–327 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zeitz, M.: The extended Luenberger observer for nonlinear systems. Syst. Control Lett. 9(2), 149–156 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhao, C.R., Xie, X.J.: Output feedback stabilization using small-gain method and reduced-order observer for stochastic nonlinear systems. IEEE Trans. Autom. Control 58(2), 523–529 (2013). doi:10.1109/TAC.2012.2208313

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu, F., Xu, J., Chen, M.: The combination of high-gain sliding mode observers used as receivers in secure communication. IEEE Trans. Circuits Syst. I Regul. Pap. 59(11), 2702–2712 (2012). doi:10.1109/TCSI.2012.2190570

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Yu, W. (2018). Luenberger Observer Design for Uncertainty Nonlinear Systems. In: Clempner, J., Yu, W. (eds) New Perspectives and Applications of Modern Control Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-62464-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62464-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62463-1

  • Online ISBN: 978-3-319-62464-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics