Skip to main content
Log in

Multiple measures-based chaotic time series for traffic flow prediction based on Bayesian theory

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Considering the chaotic characteristics of traffic flow, this study proposes a Bayesian theory-based multiple measures chaotic time series prediction algorithm. In particular, a time series of three traffic measures, i.e., speed, occupancy, and flow, obtained from different sources is used to reconstruct the phase space using the phase space reconstruction theory. Then, data from the multiple sources are combined using Bayesian estimation theory to identify the chaotic characteristics of traffic flow. In addition, a radial basis function (RBF) neural network is designed to predict the traffic flow. Compared to the consideration of a single source, results from numerical experiments demonstrate the improved effectiveness of the proposed multi-measure method in terms of accuracy and timeliness for the short-term traffic flow prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, Y., Sun, D.: Microscopic car-following model for the traffic flow: the state of the art. J. Control Theory Appl. 10, 133–143 (2012)

    Article  MathSciNet  Google Scholar 

  2. Li, Y., Sun, D., Liu, W., Zhang, M., Zhao, M., Liao, X., Tang, L.: Modeling and simulation for microscopic traffic flow based on multiple headway, velocity and acceleration difference. Nonlinear Dyn. 66, 15–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tang, T., Wang, Y., Yang, X., Wu, Y.: A new car-following model accounting for varying road condition. Nonlinear Dyn. 70, 1397–1405 (2012)

    Article  MathSciNet  Google Scholar 

  4. Li, Y., Zhu, H., Cen, M., Li, Y., Li, R., Sun, D.: On the stability analysis of microscopic traffic car-following model: a case study. Nonlinear Dyn. 74, 335–343 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tang, T., Shi, W., Shang, H., Wang, Y.: A new car-following model with consideration of inter-vehicle communication. Nonlinear Dyn. 76, 2017–2023 (2014)

    Article  Google Scholar 

  6. Tang, T., Wang, Y., Yang, X., Huang, H.: A multilane traffic flow model accounting for lane width, lane-changing and the number of lanes. Netw. Spat. Econ. 14, 465–483 (2014)

    Article  MathSciNet  Google Scholar 

  7. Tang, T., Chen, L., Yang, S., Shang, H.: An extended car-following model with consideration of the electric vehicle’s driving range. Phys. A 430, 148–155 (2015)

    Article  Google Scholar 

  8. Li, Y., Zhang, L., Peeta, S., Pan, H., Zheng, T., Li, Y., He, X.: Non-lane-discipline-based car-following model considering the effects of two-sided lateral gaps. Nonlinear Dyn. 80, 227–238 (2015)

    Article  MATH  Google Scholar 

  9. Li, Y., Zhang, L., Zheng, T., Li, Y.: Lattice hydrodynamic model based delay feedback control of vehicular traffic flow considering the effects of density change rate difference. Commun. Nonlinear Sci. Numer. Simul. 29, 224–232 (2015)

    Article  MathSciNet  Google Scholar 

  10. Li, Y., Yang, B., Zheng, T., Li, Y., Cui, M., Peeta, S.: Extended-state-observer-based double loop integral sliding mode control of electronic throttle valve. IEEE Trans. Intell. Transp. Syst. 16, 2501–2510 (2015)

    Article  Google Scholar 

  11. Li, Y., Zhang, L., Zheng, H., He, X., Peeta, S., Zheng, T., Li, Y.: Evaluating the energy consumption of electric vehicles based on car-following model under non-lane discipline. Nonlinear Dyn. 82, 629–641 (2015)

    Article  Google Scholar 

  12. Hu, J., Zong, C., Song, J., Zhang, Z., Ren, J.: An applicable short-term traffic flow forecasting method based on chaotic theory. Proc. of IEEE 6th Int. Conf. Intell. Transp. Syst 12(15), 608–613 (2003)

    Google Scholar 

  13. Smith, B.L., Williams, B.M., Oswald, R.K.: Comparison of parametric and nonparametric models for traffic flow forecasting. Transp. Res. Part C 10(4), 303–321 (2002)

    Article  Google Scholar 

  14. Vlahogianni, E.I., Karlaftis, M.G.: Comparing traffic flow time-series under fine and adverse weather conditions using recurrence-based complexity measures. Nonlinear Dyn. 69(4), 1949–1963 (2012)

    Article  Google Scholar 

  15. Wang, J., Shi, Q.: Short-term traffic speed forecasting hybrid model based on Chaos-Wavelet Analysis-Support Vector Machine theory. Transp. Res. Part C 27, 219–232 (2013)

    Article  Google Scholar 

  16. Ma, Q., Liu, W., Sun, D.: Multi-parameter fusion applied to road traffic condition forecasting. Acta Phys. Sin. 61(16), 169501–169509 (2012)

    Google Scholar 

  17. Cong, R., Liu, S., Ma, R.: An approach to phase space reconstruction from multivariate data based on data fusion. Acta Phys. Sin. 57(12), 7487–7493 (2008)

    MATH  Google Scholar 

  18. Cai, M., Cai, F., Shi, A., Zhou, B., Zhang, Y.: Chaotic time series prediction based on local-region multi-steps forecasting model. Lecture Notes in Comput. Sci. 3174, 418–423 (2004)

    Article  Google Scholar 

  19. Zhao, D., Ruan, J., Cai, Z.: Combination prediction method of chaotic time series. Chin. Sci. Bull. 52(4), 570–573 (2007)

    Article  MathSciNet  Google Scholar 

  20. Lv, J., Zhang, S.: Application of adding weight one rank local region method in electric power system short term load forecast. Control Theory Appl. 19(5), 767–770 (2002)

    Google Scholar 

  21. Kumara, K., Paridab, M., Katiyar, V.K.: Short term traffic flow prediction for a non-urban highway using artificial neural network. Procedia Soc. Behav. Sci. 104, 755–764 (2013)

    Article  Google Scholar 

  22. Karlaftis, M.G., Vlahogianni, E.I.: Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transp. Res. Part C 19(3), 387–399 (2011)

    Article  Google Scholar 

  23. Jia, Z., Jin, X., Yuan, Z.: Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections. Transp. Res. Part C 47, 139–154 (2014)

    Article  Google Scholar 

  24. Jayawardena, A.W., Fernando, D.A.K.: Use of radial basis function type artificial neural networks for runoff simulation. Comput. Aided Civil Infrastruct. Eng. 13(2), 91–99 (1998)

    Article  Google Scholar 

  25. Park, B., Carroll, J., Messer, T., Urbanik, I.I.: Short-term freeway traffic volume forecasting using radial basis function neural network. Transp. Res. Rec. 1651, 39–47 (2007)

    Article  Google Scholar 

  26. Chen, H., Grant-Muller, S.: Use of sequential learning for short-term traffic flow forecasting. Transp. Res. Part C 9(5), 319–336 (2001)

    Article  Google Scholar 

  27. Celikoglu, H.B.: Travel time measure specification by functional approximation: application of radial basis function neural networks. Procedia Soc. Behav. Sci. 20, 613–620 (2011)

    Article  Google Scholar 

  28. Zhang, Y., Qu, S., Wen, K.: A short-term traffic flow forecasting method based on chaos and RBF neural network. Syst. Eng. 25(11), 26–30 (2007)

    Google Scholar 

  29. Takens, F.: Detecting strange attractors in turbulence. Lecture Notes in Math. 898, 366–381 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jin, S., Wang, D., Qi, H.: Bayesian network method of speed estimation from single-loop outputs. J. Transp. Syst. Eng. Inform. Technol. 10(1), 54–58 (2010)

    Google Scholar 

  31. Wang, J., Deng, W., Guo, Y.: New Bayesian combination method for short-term traffic flow forecasting. Transp. Res. Part C 43, 79–94 (2014)

    Article  Google Scholar 

  32. Krese, B., Govekar, E.: Analysis of traffic dynamics on a ring road-based transportation network by means of 0–1 test for chaos and Lyapunov spectrum. Transp. Res. Part C 36, 27–34 (2013)

    Article  Google Scholar 

  33. Stathopoulos, A., Karlaftis, M.G.: A multivariate state-space approach for urban traffic flow modeling and prediction. Transp. Res. Part C 11(2), 121–135 (2003)

    Article  Google Scholar 

  34. Kim, H.S., Eykholtb, R., Salasc, J.D.: Nonlinear dynamics, delay times and embedding windows. Phys. D 127, 48–60 (1999)

    Article  Google Scholar 

  35. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D 9(1–2), 189–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ettweina, F., R\(\mathring{\rm u}\)žičkab, M., Weber, M.: Existence of steady solutions for micropolar electrorheological fluid flows. Nonlinear Anal. Theor. 125, 1–29 (2015)

  37. Lan, L.W., Sheu, J.B., Huang, Y.S.: Investigation of temporal freeway traffic patterns in reconstructed state spaces. Transp. Res. Part C 16(1), 116–136 (2008)

    Article  Google Scholar 

  38. Yua, J., Goos, P., Vandebroek, M.: A comparison of different Bayesian design criteria for setting up stated preference studies. Transp. Res. Part B 46(7), 789–807 (2012)

    Article  Google Scholar 

  39. Kellert, S.H.: In the Wake of Chaos: Unpredictable Order in Dynamical Systems. University of Chicago Press, Chicago (1994)

    MATH  Google Scholar 

  40. Ma, T., Zhou, Z., Abdulhai, B.: Nonlinear multivariate time-space threshold vector error correction model for short term traffic state prediction. Transp. Res. Part B 76, 27–47 (2015)

    Article  Google Scholar 

  41. http://pems.dot.ca.gov/

  42. Lu, Z., Cai, Z., Jiang, K.: Determination of embedding parameters for phase space reconstruction based on improved C-C method. J. Syst. Simul. 19(11), 2527–2529 (2007)

    Google Scholar 

Download references

Acknowledgments

We acknowledge the support from various grant sources: the National Natural Science Foundation of China (Grant No. 61304197), the Scientific and Technological Talents of Chongqing (Grant No. cstc2014kjrc-qnrc30002), the Key Project of Application and Development of Chongqing (Grant No. cstc2014yykfB40001), Wenfeng Talents of Chongqing University of Posts and Telecommunications,“151” Science and Technology Major Project of Chongqing—General Design and Innovative Capability of Full Information Based Traffic Guidance and Control System (Grant No. cstc2013jcsf-zdzxqqX0003)—the Doctoral Start-up Funds of Chongqing University of Posts and Telecommunication (Grant No. A2012-26), and the US Department of Transportation through the NEXTRANS Center, the USDOT Region 5 University Transportation Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Jiang, X., Zhu, H. et al. Multiple measures-based chaotic time series for traffic flow prediction based on Bayesian theory. Nonlinear Dyn 85, 179–194 (2016). https://doi.org/10.1007/s11071-016-2677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2677-5

Keywords

Navigation