Skip to main content
Log in

Microscopic car-following model for the traffic flow: the state of the art

  • Published:
Journal of Control Theory and Applications Aims and scope Submit manuscript

Abstract

Car-following theory is an important research direction in the field of intelligent transportation systems (ITS), it describes the one-by-one following process of vehicles on the same lane in traffic flow, and one of its important issues is congestion control. To explore the strategy for controlling traffic congestion, this paper introduces and analyzes some classic car-following models, and gives a systematic review of their developments. Moreover, in order to introduce the approach to analyze the stability, taking the full velocity difference (FVD) model for example, the local and asymptotic stability analysis is discussed, while the corresponding nonlinear analysis is also conducted. Then, some perspectives of the car-following model are given in the final.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zhao, Z. Gao. Controlling traffic jams by a feedback signal. The European Physical Journal B, 2005, 43(4): 565–572.

    Article  Google Scholar 

  2. B. S. Kerner, H. Rehborn. Experimental features and characteristics of traffic jam. Physic Review E, 1996, 53(2): 1297–1300.

    Article  Google Scholar 

  3. B. S. Kerner, H. Rehborn. Experimental properties of phase transitions in traffic flow. Physic Review Letters, 1997, 79(20): 4030–4033.

    Article  Google Scholar 

  4. T. Nagatani, K. Nakanishi. Delay effect on phase transitions in traffic dynamics. Physic Review E, 1998, 57(6): 6415–6421.

    Article  Google Scholar 

  5. T. Nagatani. Thermodynamic theory for the jamming transition in traffic flow. Physic Review E, 1998, 58(4): 4271–4276.

    Article  Google Scholar 

  6. Y. Xue. Analysis of the stability and density waves for traffic flow. Chinese Physics, 2002, 11(11): 1128–1135.

    Article  Google Scholar 

  7. L. Li, P. Shi. Phase transitions in a new car-following traffic flow model. Chinese Physics, 2005, 14(3): 576–583.

    Article  Google Scholar 

  8. H. Ge, S. Dai, Y. Xue, et al. Stabilization analysis and modified Korteweg-de Vries equation in a cooperative driving system. Physic Review E, 2005, 71(6): 66119–66126.

    Article  MathSciNet  Google Scholar 

  9. Z. Li, X. Gong, Y. Liu. An improved car-following model for multiphase vehicular traffic flow and numerical tests. Communications Computational Physics, 2006, 46(8): 367–373.

    Google Scholar 

  10. Z. Li, Y. Liu. Analysis of stability and density waves of traffic flow model in an ITS environment. The European Physical Journal B, 2006, 53(3): 367–374.

    Article  MATH  Google Scholar 

  11. L. A. Pipes. An operational analysis of traffic dynamics. Journal of Applications Physics, 1953, 24(3): 274–281.

    Article  MathSciNet  Google Scholar 

  12. L. A. Pipes. Car-following models and the fundamental diagram of road traffic. Transportation Research, 1967, 1(1): 21–29.

    Article  Google Scholar 

  13. Y. Weng, T. Wu. Car-following model for vehicular traffic. Journal of Zhejiang University — Science A, 2002, 3(4): 412–417.

    Article  Google Scholar 

  14. Z. Zhang, J. Rong, F. Ren. Review of car-following model research. Journal of Highway and Transportation Research and Development, 2004, 21(8): 108–113 (in Chinese).

    Google Scholar 

  15. S. Darbha, K. R. Rajagopal, V. Tyagi. A review of mathematical models for the flow of traffic and some recent results. Nonlinear Analysis, 2008, 69(3): 950–970.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. E. Chandler, R. Herman, E.W. Montroll. Traffic dynamics: studies in car following. Operations Research, 1958, 6(2): 165–184.

    Article  MathSciNet  Google Scholar 

  17. D. C. Gazis, R. Herman, R. Potts. Car-following theory of steady state traffic flow. Operations Research, 1959, 7(4): 499–595.

    Article  MathSciNet  Google Scholar 

  18. L. C. Edie. Car following and steady state theory for non-congested traffic. Operations Research, 1961, 9(1): 66–76.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Brackstone, M. McDonald. Car-following: a historical review. Transportation Research Part F: Traffic Psychology and Behaviour, 1999, 2(4): 181–196.

    Article  Google Scholar 

  20. R. Herman, R. B. Potts. Single lane traffic theory and experiment. Proceedings of Symposium on Theory of Traffic Flow. New York: Elsevier Publishing Co., 1961: 120–146.

    Google Scholar 

  21. W. Helly. Simulation of bottlenecks in single lane traffic flow. Proceedings of Symposium on Theory of Traffic Flow. New York: Elsevier Publishing Co., 1959: 207–238.

    Google Scholar 

  22. D. C. Gazis, R. Herman, R. W. Rothery. Nonlinear follow the leader models of traffic flow. Operations Research, 1961, 9(4): 545–567.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. D. May (Jr.), H. E. M. Keller. Non-integer car following models. Highway Research Record, 1967, 199(1): 19–32.

    Google Scholar 

  24. M. P. Heyes, R. Ashworth. Further research on car following models. Transportation Research, 1972, 6(3): 287–291.

    Article  Google Scholar 

  25. D. H. Hoefs. Entwicklung einer Messmethode uber den Bewegungsablauf des Kolonnenverrkehrs. Germany: Universitat (TH) Karlsruhe, 1972.

    Google Scholar 

  26. J. Treiterer, J. A. Myers. The hysteresis phenomenon in traffic flow. Proceedings of the 6th International Symposium on Transportation and Traffic Theory. New York: Elsevier Publishing Co., 1974: 13–38.

    Google Scholar 

  27. A. Ceder, A. D. May Jr. Further evaluation of single and two regime traffic flow models. Transportation Research Record, 1976, 567(1): 1–15.

    Google Scholar 

  28. M. Aron. Car following in an urban network: simulation and experiments. Proceedings of Seminar D — the 16th Planning and Transport, Research and Computation (PTRC) Meeting. Arcueil, France, 1988: 27–39.

  29. H. Ozaki. Reaction and anticipation in the car following behaviour. Proceedings of the 13th International Symposium on Traffic and Transportation Theory. New York: Elsevier Publishing Co., 1993: 349–366.

    Google Scholar 

  30. M. Bando, K. Hasebe, A. Nakayama, et al. Dynamics model of traffic congestion and numerical simulation. Physic Review E, 1995, 51(2):1035–1042.

    Article  Google Scholar 

  31. M. Bando, K. Hasebe. Analysis of optimal velocity model with explicit delay. Physic Review E, 1998, 58(5): 5429–5435.

    Article  Google Scholar 

  32. S. Sawada. Nonlinear analysis of a differential-difference equation with next-nearest-neighbour interaction for traffic flow. Journal of Physics A: Mathematical and General, 2001, 34(50): 11253–11259.

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Ge, S. Dai, L. Dong, et al. Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application. Physic Review E, 2004, 70(6): 66134–66140.

    Article  MathSciNet  Google Scholar 

  34. D. Helbing, B. Tilch. Generalized force model of traffic dynamics. Physic Review E, 1998, 58(1): 133–138.

    Article  Google Scholar 

  35. M. Treiber, A. Hennecke, D. Helbing. Derivation, properties and simulation of a gas-kinetic-based nonlocal traffic model. Physic Review E, 1999, 59(1): 239–253.

    Article  Google Scholar 

  36. R. Jiang, Q. Wu, Z. Zhu. A new continuum model for traffic flow and numerical tests. Transportation Research — Part B, 2002, 36(5): 405–419.

    Article  Google Scholar 

  37. Y. Xue, L. Dong, Y. Yuan, et al. Numerical simulation on traffic flow with the consideration of relative velocity. Acta Physica Sinica, 2002, 51(3): 492–496 (in Chinese).

    Google Scholar 

  38. Y. Xue. A car-following model with stochastically considering the relative velocity in a traffic flow. Acta Physica Sinica, 2003, 52(11):2750–2756 (in Chinese).

    Google Scholar 

  39. H. Gong, H. Liu, B. Wang. An asymmetric full velocity difference car-following model. Physica A, 2008, 387(11): 2595–2602.

    Article  Google Scholar 

  40. H. Ge. Two velocity difference model for a car following theory. Physica A, 2008, 387(21): 5239–5245.

    Article  Google Scholar 

  41. X. Zhao, Z. Gao. A new car-following model: full velocity and acceleration difference model. The European Physical Journal B, 2005, 47(1): 145–150.

    Article  Google Scholar 

  42. X. Zhao, Z. Gao. The stability analysis of the full velocity and acceleration difference model. Physica A, 2007, 375(2): 679–686.

    Article  MathSciNet  Google Scholar 

  43. T. Wang, Z. Gao, X. Zhao. Multiple velocity difference model and its stability analysis. Acta Physica Sinica, 2006, 55(2): 634–638 (in Chinese).

    Google Scholar 

  44. G. Peng, D. Sun. Multiple car-following model of traffic flow and numerical simulation. Chinese Physics B, 2009, 18(12): 5420–5426.

    Article  Google Scholar 

  45. G. Peng, D. Sun. A dynamical model of car-following with the consideration of the muliple information of preceding cars in an ITS environment. Physics Letter A, 2010, 374(15/16): 1694–1698.

    Article  Google Scholar 

  46. D. Xie, Z. Gao, X. Zhao. Stabilization of traffic flow based on the multiple information of preceding cars. Communications Computational Physics, 2008, 3(4): 899–912.

    MathSciNet  Google Scholar 

  47. D. Sun, Y. Li, C. Tian. Car-following model based on the information of multiple ahead & velocity difference. System Engenering Theory & Practice, 2010, 30(7): 1326–1332.

    MathSciNet  Google Scholar 

  48. C. Kikuchi, P. Chakroborty. Car following model based on a fuzzy inference system. Transportation Research Record, 1992, 1365: 82–91.

    Google Scholar 

  49. K. Nagel, M. Schreckenberg. A cellular automaton model for freeway traffic. Journal de Physique, 1992, 2(12): 2221–2229.

    Article  Google Scholar 

  50. M. Fukui, Y. Ishibashi. Traffic flow in 1D cellular automaton model including cars moving with high speed. Journal of the Physical Society of Japan, 1996, 65(6): 1868–1870.

    Article  Google Scholar 

  51. S. Krauss, P. Wagner, C. Gawron. Metastable states in a microscopic model of traffic flow. Physic Review E, 1997, 55(4): 5597–5602.

    Article  Google Scholar 

  52. D. Helbing, M. Schreckenberg. Cellular automata simulating experimental properties of traffic flow. Physic Review E, 1999, 59(3):2505–2508.

    Article  Google Scholar 

  53. D. Chowdhury, L. Santen, A. Schadschneider. Statistical physics of vehicular traffic and some related systems. Physics Report, 2000, 329(4/6): 199–329.

    Article  MathSciNet  Google Scholar 

  54. Y. Xue, L. Dong, S. Dai. An improved one-dimensional cellular automaton model of traffic flow and the effect of deceleration probability. Acta Physica Sinica, 2001, 50(3): 445–450 (in Chinese).

    Google Scholar 

  55. H. Ge, H. Zhu, S. Dai. Cellular automaton traffic flow model considering intelligent transportation system. Acta Physica Sinica, 2005, 54(10): 4621–4627 (in Chinese).

    Google Scholar 

  56. H. Tian, Y. Xue, S. Kan, et al. Study on the energy consumption using the cellular automaton mixed traffic model. Acta Physica Sinica, 2009, 58(7): 4506–4514 (in Chinese).

    MATH  Google Scholar 

  57. J. Ding, H. Huang, T. Tang. A cellular automaton model of traffic considering the dynamic evolution of velocity randomization probability. Acta Physica Sinica, 2009, 58(11): 7591–7596 (in Chinese).

    Google Scholar 

  58. N. Jia, S. Ma. Comparison between the optimal velocity model and the Nagel-Schreckenberg model. Acta Physica Sinica, 2010, 59(2):832–842 (in Chinese).

    MathSciNet  MATH  Google Scholar 

  59. H. Zhang. Analysis of the stability and wave properties of a new continuum traffic theory. Transportation Research — Part B, 1999, 33(6): 399–415.

    Article  Google Scholar 

  60. Y. Xue. Analysis of the stability and density waves for traffic flow. Chinese Physics, 2002, 11(11): 1128–1137.

    Article  Google Scholar 

  61. H. Zhang. A non-equilibrium traffic flow model devoid of gas-like behavior. Transportation Research — Part B, 2002, 36(3): 275–290.

    Article  Google Scholar 

  62. T. Tang, H. Huang, Y. Zhang. Stability analysis for traffic flow with perturbations. International Journal of Modern Physics C, 2008, 19(9): 1367–1375.

    Article  MATH  Google Scholar 

  63. K. Konishi, H. Kokame, K. Hirata. Coupled map car-following model and its delayed-feedback control. Physic Review E, 1999, 60(4): 4000–4007.

    Article  Google Scholar 

  64. K. Konishi, H. Kokame, K. Hirata. Decentralized delayed-feedback control of an optimal velocity traffic model. The European Physical Journal B, 2000, 15(4): 715–722.

    Article  Google Scholar 

  65. X. Zhao, Z. Gao. The stability analysis of the full velocity and acceleration difference model. Physica A, 2007, 375(2): 679–686.

    Article  MathSciNet  Google Scholar 

  66. D. A. Kurtz, D. Hong. Traffic jams, granular flow, and soliton selection. Physic Review E, 1995, 52(1): 218–221.

    Article  Google Scholar 

  67. T. S. Komatsu, S. Sasa. Kink soliton characterizing traffic congestion. Physic Review E, 1995, 52(5): 5574–5582.

    Article  Google Scholar 

  68. T. Nagatani. Modified KdV equation for jamming transition in the continuum models of traffic. Physica A, 1998, 261(3/4): 599–607.

    Article  MathSciNet  Google Scholar 

  69. T. Nagatani. Stabilization and enhancement of traffic flow by the nextnearest-neighbor interaction. Physic Review E, 1999, 60(6): 6395–6401.

    Article  Google Scholar 

  70. Z. Li, Y. Liu, F. Liu. A dynamical model with next-nearest-neighbor interaction in relative velocity. Internatianal Journal of Modern Physics C, 2007, 18(5): 819–832.

    Article  MATH  Google Scholar 

  71. H. Ge, R. Cheng, S. Dai. KdV and kink-antikink solitons in carfollowing models. Physica A, 2005, 357(3/4): 46–476.

    MathSciNet  Google Scholar 

  72. Y. Lei, Z. Shi. Nonlinear analysis of an extended traffic flow model in ITS environment. Chaos, Solitons and Fractals, 2008, 36(3): 550–558.

    Article  MathSciNet  MATH  Google Scholar 

  73. L. Yu, Z. Shi, B. Zhou. Kink-antikink density wave of an extended car-following model in a cooperative driving system. Communication in Nonlinear Science and Numerical Simulation, 2008, 13(10): 2167–2176.

    Article  Google Scholar 

  74. T. Nagatani. Traffic jam and shock information in stochastic traffic flow model of a two-lane roadway. Journal of the Physical Society of Japan, 1994, 63(1): 52–58.

    Article  Google Scholar 

  75. T. Nagatani. Dynamical jamming transition induced by a car accident in traffic flow model of a two-lane roadway. Physica A, 1994, 202(3/4): 449–458.

    Article  Google Scholar 

  76. S. Kurata, T. Nagatani. Spatio-temporal dynamics of jams in two-lane traffic flow with a blockage. Physica A, 2003, 318(3/4): 537–550.

    Article  MATH  Google Scholar 

  77. T. Tang, H. Huang. Traffic flow model of two lanes and numerical calculation. Chinese Science Bulletin, 2004, 49(19): 1937–1943.

    Article  MathSciNet  Google Scholar 

  78. T. Tang, H. Huang. Wave properties of a traffic flow model for freeways with two lanes. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(10): 1121–1124.

    Google Scholar 

  79. T. Tang, H. Huang, Z. Gao. Stability of the car-following model on two lanes. Physics Review E, 2005, 72(6): 66124–66131.

    Article  Google Scholar 

  80. T. Tang, H. Huang, S. Wong, et al. Lane changing analysis for twolane traffic flow. Acta Mathematica Sinica, 2007, 23(1): 49–54 (in Chinese).

    MATH  Google Scholar 

  81. D. Sun, G. Peng. A viscous continuum traffic flow model with the consideration of coupling effect for two-lane freeways. Chinese Physics B, 2009, 18(9): 3724–3730.

    Article  Google Scholar 

  82. D. Sun, G. Peng, L. Fu, et al. A continuum traffic flow model with the consideration of coupling effect for two-lane freeways. Acta Mechanica Sinica, 2010, 27(2): 228–236 (in Chinese).

    Article  MathSciNet  Google Scholar 

  83. G. Peng. Simulation Research on Complicated Coupling Dynamical Characteristics of Traffic Flow. Chongqing: Chongqing University, 2009.

    Google Scholar 

  84. P. S. Addison, D. J. Low. A novel nonlinear car-following model. Chaos, 1998, 8(4): 791–799.

    Article  MATH  Google Scholar 

  85. L. A. Safonov, E. Tomer, V. V. Strygin, et al. Multifractal chaotic attractors in a system of delay-differential equations modeling road traffic. Chaos, 2002, 12(4): 1006–1014.

    Article  MathSciNet  MATH  Google Scholar 

  86. D. Wang, G. He. Summary and prospects of the study on traffic chaos. China Civil Engineering Journal, 2003, 36(1): 68–75 (in Chinese).

    Google Scholar 

  87. G. He, D. Wang. Simulation study on the transition between chaos and order motion in the traffic flow. China Civil Engineering Journal, 2003, 36(7): 53–57 (in Chinese).

    MathSciNet  Google Scholar 

  88. G. He, X. Wan. Simulation research on evaluating of reasonability for the car-following models based on chaos criterion. System Engenering Theory & Practice, 2004, 24(4): 123–130 (in Chinese).

    Google Scholar 

  89. S. C. Lo, H. J. Cho. Chaos and control of discrete dynamic traffic model. Journal of the Franklin Institute, 2005, 342(7): 839–851.

    Article  MathSciNet  MATH  Google Scholar 

  90. M. Xu, Z. Gao. Chaos in a dynamic model of urban transportation network flow based on user equilibrium states. Chaos, Solitons and Fractals, 2009, 39(2): 586–598.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Li.

Additional information

This work was supported by the Chongqing Natural Science Foundation (No. CSTC2012JJB40002), the Chongqing Academy of Science Foundation (No. CSTC2011JJYS30001), the Fundamental Research Funds for the Central Universities (No. CDJXS10170002), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20090191110022).

Yongfu LI is a Ph.D. candidate at the College of Automation, Chongqing University. His research interests include transportation cyber-physical systems (T-CPS), intelligent transportation systems (ITS), system engineering, and car steering control.

Dihua SUN is a professor at the College of Automation, Chongqing University. He received his B.S. degree in Control Theory from Huazhong University of Science and Technology, M.S. degree in Control Theory and Applications, and Ph.D. degree both from Chongqing University, in 1982, in 1989, and in 1997, respectively. His current research interests include transportation cyber-physical systems (T-CPS), intelligent transportation systems (ITS), and computer vision control.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Sun, D. Microscopic car-following model for the traffic flow: the state of the art. J. Control Theory Appl. 10, 133–143 (2012). https://doi.org/10.1007/s11768-012-9221-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-012-9221-z

Keywords

Navigation