Skip to main content
Log in

Stochastic modeling of nonlinear oscillators under combined Gaussian and Poisson white noise: a viewpoint based on the energy conservation law

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A stochastic differential equation model is considered for nonlinear oscillators under excitations of combined Gaussian and Poisson white noise. Since the solutions of stochastic differential equations can be interpreted in terms of several types of stochastic integrals, it is sometimes confusing about which integral is actually appropriate. In order for the energy conservation law to hold under combined Gaussian and Poisson white noise excitations, an appropriate stochastic integral is introduced in this paper. This stochastic integral reduces to the Di Paola–Falsone integral when the multiplicative noise intensity is infinitely differentiable with respect to the state. The stochastic integral introduced in this paper is applicable in more general situations. Numerical examples are presented to illustrate the theoretical conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

t :

Time

m :

Mass

k :

Stiffness coefficient

x(t):

Displacement depending on time

\(\dot{x}(t)\) :

First derivative of x(t) with respect to time t

\(\overset{..}{ x}(t)\) :

Second derivative of x(t) with respect to time t

\(g(x(t), \dot{x}(t)\) :

A function of x(t) and \(\dot{x}(t)\) which appears as a generalized force term

\(f(x(t), \dot{x}(t))\) :

A function of x(t) and \(\dot{x}(t)\) which appears as the coefficient of noise term

B(t):

Brownian motion

\(\dot{B}(t)\) :

Gaussian white noise defined as the generalized time derivative of the Brownian motion B(t)

C(t):

Compound Poisson process

\(\dot{C}(t)\) :

Compound Poisson white noise defined as the generalized time derivative of the compound Poisson process C(t)

N(t):

Poisson process

\(\tilde{\lambda }\) :

Intensity parameter of the Poisson process N(t)

b :

A constant representing the weight of B(t) in L(t)

c :

A constant representing the weight of C(t) in L(t)

\(U(t-t_i)\) :

A unit step function at time \(t_i\)

\(\delta (t-t_i)\) :

Delta function at time \(t_i\)

\(R_i\) :

Random variable representing the ith impulse in C(t)

L(t):

A stochastic process defined as \( bB(t)+cC(t)\)

\(\dot{L}(t)\) :

Combined Gaussian and Poisson white noise defined as the generalized time derivative of the stochastic process L(t)

\(\mathbf {y} (t)\) :

State variable defined as \(\begin{pmatrix}x(t)\\ \dot{x}(t) \end{pmatrix}\)

A :

A matrix defined as \(\begin{pmatrix} 0 &{}\quad 1\\ -\dfrac{k}{m} &{}\quad 0\end{pmatrix}\)

\(\omega \) :

A variable defined as \(\sqrt{\dfrac{k}{m}}\)

\(\star \) :

Ito calculus

\(\circ \) :

Stratonovich calculus

\(C(s-)\) :

The left limit of C(s) at s

\(\Delta C(s)\) :

The jump size of C(s) at s, defined as \(C(s) - C(s-)\)

\(\underline{\dot{x}} (t_i, r)\) :

The value of \(\dot{x}(s)\) at \(s=t_i\) as C(s) jumped from \(C(t_i-)\) to r

References

  1. Oksendal, B.K.: Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  2. Klebaner, F.C.: Introduction to Stochastic Calculus with Applications, 2nd edn. Imperial College Press, London (2005)

    Book  MATH  Google Scholar 

  3. Zhu, H.T.: Multiple-peak probability density function of non-linear oscillators under gaussian white noise. Probab. Eng. Mech. 31, 46–51 (2014)

    Article  Google Scholar 

  4. Zhao, Z.H., Chang, K., Neito, J.J.: Asymptotic behavior of solutions to abstract stochastic fractional partial integrodifferential equations. Abstr. Appl. Anal. 2013, 138086 (2013)

    MathSciNet  Google Scholar 

  5. Luo, G., Liang, J., Zhu, C.: The transversal homoclinic solutions and chaos for stochastic ordinary differential equations. J. Math. Anal. Appl. 412, 301–325 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wong, E., Zakai, M.: On the relation between ordinary and stochastic differential equations. Int. J. Eng. Sci. 3, 213–229 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ibrahim, R.A.: Parametric Random Vibration. Research Studies Press, Champaign (1985)

    MATH  Google Scholar 

  8. Yong, Y., Lin, Y.K.: Exact stationary response solution for second order nonlinear systems under parametric and external white noise excitations. J. Appl. Mech. Trans. Am. Soc. Mech. Eng. 54, 414–418 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shi, J., Chen, T., Yuan, R., Ao, P.: Relation of a new interpretation of stochastic differential equations to ito process. J. Stat. Phys. 148, 579–590 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yuan, R., Ao, P.: Beyond ito versus stratonovich. J. Stat. Mech. P07010 (2012). doi:10.1088/1742-5468/2012/07/P07010

  11. Volpe, M., Helden, L., Brettschneider, T., Wehr, J., Bechinger, C.: Influence of noise on force measurement. Phys. Rev. Lett. 104, 170602 (2010)

    Article  Google Scholar 

  12. Di Paola, M., Falsone, G.: Ito and stratonovich integrals for delta-correlated processes. Probab. Eng. Mech. 8, 197–208 (1993)

  13. Di Paola, M., Falsone, G.: Stochastic dynamics of non-linear systems driven by non-normal delta-correlated processes. ASME J. Appl. Mech. 60, 141–148 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caddemi, S., Di Paola, M.: Ideal and physical white noise in stochastic analysis. Int. J. Non-linear Mech. 31(5), 581–590 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Proppe, C.: The wong-zakai theorem for dynamical systems with parametric poisson white noise excitation. Int. J. Eng. Sci. 40, 1165–1178 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Di Paola, M., Pirrotta, A.: Direct derivation of corrective terms in sde through nonlinear transformation on fokker-planck equation. Nonlinear Dyn. 36, 349–360 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pirrotta, A.: Non-linear systems under parametric white noise input: digital simulation and response. Int. J. Non-linear Mech. 40, 1088–1101 (2005)

    Article  MATH  Google Scholar 

  18. Pirrotta, A.: Multiplicative cases from additive cases: Extension of Kolmogorov–Feller equation to parametric poisson white noise processes. Probab. Eng. Mech. 22, 127–135 (2007)

    Article  Google Scholar 

  19. Zeng, Y., Zhu, W.Q.: Stochastic averaging of quasi-linear systems driven by poisson white noise. Probab. Eng. Mech. 25, 99–107 (2010)

    Article  Google Scholar 

  20. Zeng, Y., Zhu, W.Q.: Stochastic averaging of n-dimensional non-linear dynamical systems subject to non-gaussian wide-band random excitations. Int. J. Non-linear Mech. 45, 572–586 (2010)

    Article  Google Scholar 

  21. Wan, J., Zhu, W.: Stochastic averaging of quasi-integrable and non-resonant hamiltonian systems under combined gaussian and poisson white noise excitations. Nonlinear Dyn. 76, 1271–1289 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, W., Zhu, W., Jia, W.: Stochastic stability of quasi-integrable and non-resonant hamiltonian systems under parametric excitations of combined gaussian and poisson white noises. Int. J. Non-linear Mech. 58, 191–198 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grigoriu, M.: The ito and stratonovich integrals for stochastic differential equations with poisson white noise. Probab. Eng. Mech. 13, 175–182 (1998)

    Article  Google Scholar 

  24. Hu, S.L.J.: Closure on discussion by di paola, m. and falsone, g., on “response of dynamic systems excited by non-gaussian pulse processes”. ASCE J. Eng. Mech. 120, 2472–2474 (1994)

    Article  Google Scholar 

  25. Sun, X., Duan, J., Li, X.: An alternative expression for stochastic dynamical systems with parametric poisson white noise. Probab. Eng. Mech. 32, 1–4 (2013)

    Article  Google Scholar 

  26. Kloeden, P., Platen, E.: Numerical Solutions of Stochastic Differential Equations. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Sun.

Appendix: Proof of the energy–work law (33) from the solution (32)

Appendix: Proof of the energy–work law (33) from the solution (32)

For convenience, we introduce the following notations: \(g(s)=\dfrac{1}{m} g(x(s),\dot{x}(s))\), \(f(s)=\dfrac{1}{m} f(x(s), \dot{x}(s))\), and \(f_{\dot{x}} (s)=\dfrac{1}{m} f_{\dot{x}(s)}(x(s), \dot{x}(s))\). In this Appendix, all stochastic integrals with respect to Brownian motion are in the sense of Ito (we have dropped \(\star \) notation). Then the energy–work law (33) is equivalent to

$$\begin{aligned}&\frac{1}{2} \left[ \dot{x}^2(t) + \omega ^2 x^2(t)\right] - \frac{1}{2} \left[ \ \dot{x}^2(0) + \omega ^2 x^2(0) \right] \nonumber \\&\quad = \int _0^t \left[ \left( g(s) + \dfrac{1}{2} f(s)f_{\dot{x}} (s) \right) \dot{x}(s)+\frac{1}{2 }f^2(s) \right] \,\mathrm{d}s \nonumber \\&\quad + \int _0^t f(s) \dot{x}(s)\, \mathrm{d}B(s). \end{aligned}$$
(48)

Next, we show the solution given in (32) satisfies the energy–work law (48).

Denote the right- and left-hand sides of (48) by RHS and LHS, respectively. Substitute (32) into the left-hand side of (48), we get

$$\begin{aligned} \hbox {LHS}&=\frac{1}{2} \left( \int _0^t \sin \omega (t\!-\!s)\left[ g(s) \!+\! \frac{1}{2}f(s) f_{\dot{x}} (s) \right] \,\mathrm{d}s \right) ^2 \nonumber \\&\quad +\frac{1}{2} \left( \int _0^t \sin (\omega (t\!-\!s)) f(s) \,\mathrm{d}B(s) \right) ^2\nonumber \\&\quad + \frac{1}{2} \left( \int _0^t \cos \omega (t\!-\!s)\left[ g(s) \!+\! \frac{1}{2}f(s) f_{\dot{x}} (s) \right] \,\mathrm{d}s \right) ^2 \nonumber \\&\quad +\frac{1}{2}\left( \int _0^t \cos (\omega (t-s)) f(s) \,\mathrm{d}B(s) \right) ^2 \nonumber \\&\quad + \left( \omega \cos (\omega t) x_0 + \sin (\omega t) \dot{x}_0 \right) \nonumber \\&\quad \times \int _0^t \sin \omega (t-s)\left[ g(s) + \frac{1}{2}f(s) f_{\dot{x}} (s) \right] \,\mathrm{d}s\nonumber \\&\quad + ( \omega \cos (\omega t) x_0 + \sin (\omega t) \dot{x}_0)\int _0^t \sin (\omega (t-s))\nonumber \\&\quad \times f(s)\,\mathrm{d}B(s)\nonumber \\&\quad + \left( \int _0^t \sin \omega (t-s) \left[ g(s) + \frac{1}{2}f(s) f_{\dot{x}} (s) \right] \,\mathrm{d}s \right) \nonumber \\&\quad \times \left( \int _0^t \sin (\omega (t-s)) f(s) \,\mathrm{d}B(s)\right) \nonumber \\&\quad + \left( -\omega \sin (\omega t) x_0 + \cos (\omega t) \dot{x}_0 \right) \nonumber \\&\quad \times \int _0^t \cos \omega (t-s)\left[ g(s) + \frac{1}{2}f(s) f_{\dot{x}} (s) \right] \,\mathrm{d}s\nonumber \\&\quad + (-\omega \sin (\omega t) x_0 + \cos (\omega t) \dot{x}_0)\int _0^t \cos (\omega (t-s))\nonumber \\&\quad \times f(s) \,\mathrm{d}B(s)\nonumber \\&\quad + \left( \int _0^t \cos (\omega (t-s) \left[ g(s) + \frac{1}{2}f(s) f_{\dot{x}} (s) \right] \,\mathrm{d}s\right) \nonumber \\&\quad \times \left( \int _0^t \cos (\omega (t-s)) f(s) \,\mathrm{d}B(s)\right) . \end{aligned}$$
(49)

Substituting (32) into the right-hand side of (48), we get

$$\begin{aligned}&\hbox {RHS} = \int _0^t \left( g(s)+ f(s)f_{\dot{x}}(s) \right) \nonumber \\&\quad \times \left( -\omega \sin (\omega s) x_0 + \cos (\omega s) \dot{x}_0\right) \,\mathrm{d}s\nonumber \\&\quad + \int _0^t\int _0^s \Bigg [\cos (\omega (s-p)) \left( g(s)+ \frac{f(s)f_{\dot{x}}(s)}{2}\right) \nonumber \\&\quad \times \left( g(p)+ \frac{f(p)f_{\dot{x}}(p)}{2}\right) \Bigg ]\,\mathrm{d}p\,\mathrm{d}s\nonumber \\&\quad + \int _0^t\int _0^s \Bigg [\cos (\omega (s-p))\nonumber \\&\quad \times \left. \left( g(s)+ \frac{f(s)f_{\dot{x}}(s)}{2}\right) f(p)\right] \,\mathrm{d}B(p) \,\mathrm{d}s \nonumber \\&\quad + \frac{1}{2}\int _0^t f^2(s) \,\mathrm{d}s + \int _0^t f(s)\nonumber \\&\quad \times \left( -\omega \sin (\omega s) x_0+ \cos (\omega s) \dot{x}_0 \right) \,\mathrm{d}B(s)\nonumber \\&\quad + \int _0^t \int _0^s \cos (\omega (s-p)) f(s)\nonumber \\&\quad \times \left( g(p)+ \frac{f(p)f_{\dot{x}}(p)}{2}\right) \,\mathrm{d}p \,\mathrm{d}B(s)\nonumber \\&\quad + \int _0^t \int _0^s \cos (\omega (s-p)) f(s)f(p) \,\mathrm{d}B(p)\,\mathrm{d}B(s). \end{aligned}$$
(50)

To prove LHS in (49) is equal to RHS in (50), we claim the following facts

$$\begin{aligned}&\int _0^t\int _0^s \Bigg [ \cos (\omega (s-p)) \left( g(s)+ \frac{f(s)f_{\dot{x}}(s)}{2}\right) \nonumber \\&\quad \times \left( g(p)+ \frac{f(p)f_{\dot{x}}(p)}{2}\right) \Bigg ]\,\mathrm{d}p\, \mathrm{d}s\nonumber \\&= \frac{1}{2} \left[ \int _0^t \sin (\omega (t-s)) \left( g(s)+ \frac{f(s)f_{\dot{x}}(s)}{2}\right) \,\mathrm{d}s \right] ^2 \nonumber \\&\quad + \frac{1}{2} \left[ \int _0^t \cos (\omega (t\!-\!s)) \left( g(s)\!+\! \frac{f(s)f_{\dot{x}}(s)}{2}\right) \,\mathrm{d}s \right] ^2, \end{aligned}$$
(51)
$$\begin{aligned}&\int _0^t \int _0^s \cos (\omega (s-p)) f(s)f(p) \,\mathrm{d}B(p) \,\mathrm{d}B(s) \nonumber \\&\quad + \frac{1}{2} \int _0^t f^2(s) \,\mathrm{d}s\nonumber \\&=\frac{1}{2} \left( \int _0^t \sin (\omega (t-s)f(s) \,\mathrm{d}B(s) \right) ^2 \nonumber \\&\quad \quad +\frac{1}{2} \left( \int _0^t \cos (\omega (t-s)f(s) \,\mathrm{d}B(s) \right) ^2, \end{aligned}$$
(52)
$$\begin{aligned}&\int _0^t\int _0^s \left[ \cos (\omega (s-p)\left( g(s)+ \frac{f(s)f_{\dot{x}}(s)}{2}\right) \right] \nonumber \\&\quad \times f(p) \,\mathrm{d}B(p) \,\mathrm{d}s \nonumber \\&\quad + \int _0^t\int _0^s \left[ \cos (\omega (s-p)\left( g(p)+ \frac{f(p)f_{\dot{x}}(p)}{2}\right) \right] \nonumber \\&\quad \times f(s) \,\mathrm{d}p\,\mathrm{d}B(s)\nonumber \\&= \int _0^t \cos (\omega (t-s)) \left( g(s)+ \frac{f(s)f_{\dot{x}}(s)}{2}\right) \,\mathrm{d}s \nonumber \\&\quad \times \int _0^t \cos (\omega (t-s)) f(s) \,\mathrm{d}B(s) \nonumber \\&\quad + \int _0^t \sin (\omega (t-s)) \left( g(s)+ \frac{f(s)f_{\dot{x}}(s)}{2}\right) \,\mathrm{d}s \nonumber \\&\quad \times \int _0^t \sin (\omega (t-s))f(s) \,\mathrm{d}B(s)\, \end{aligned}$$
(53)
$$\begin{aligned}&\int _0^t \left( g(s)+ \frac{f(s)f_{\dot{x}}(s)}{2}\right) \nonumber \\&\quad \times \Bigg (-\omega \sin (\omega s) x_0 + \cos (\omega s) \dot{x}_0\Bigg ) \,\mathrm{d}s\nonumber \\&= (-\omega \sin (\omega t) x_0 + \cos (\omega t) \dot{x}_0) \nonumber \\&\quad \times \int _0^t \cos (\omega (t-s))\left( g(s)+ \frac{f(s)f_{\dot{x}}(s)}{2}\right) \,\mathrm{d}s\nonumber \\&\quad + (\omega \cos (\omega t) x_0 + \sin (\omega t) \dot{x}_0) \nonumber \\&\quad \times \int _0^t \sin (\omega (t-s))\left( g(s)+ \frac{f(s)f_{\dot{x}}(s)}{2}\right) \,\mathrm{d}s, \end{aligned}$$
(54)

and

$$\begin{aligned}&\int _0^t f(s) \left( -\omega \sin (\omega s) x_0+ \cos (\omega s) \dot{x}_0 \right) \,\mathrm{d}B(s)\nonumber \\&\quad = (-\omega \sin (\omega t) x_0 + \cos (\omega t) \dot{x}_0)\nonumber \\&\qquad \times \int _0^t \cos (\omega (t-s)) f(s) \,\mathrm{d}B(s)\nonumber \\&\qquad + (\omega \cos (\omega t) x_0 + \sin (\omega t) \dot{x}_0)\nonumber \\&\qquad \times \int _0^t \sin (\omega (t-s)) f(s) \,\mathrm{d}B(s). \end{aligned}$$
(55)

One can easily see that (54) and (55) are true by using the trignometric identities

$$\begin{aligned}&\cos (\omega s)=\cos (\omega t)\cos (\omega (t-s))\\&\quad +\sin (\omega t)\sin (\omega (t-s)), \end{aligned}$$

and

$$\begin{aligned}&\sin (\omega s)=\sin (\omega t)\cos (\omega (t-s))\\&\quad -\cos (\omega t)\sin (\omega (t-s)), \end{aligned}$$

In the following, we give the proofs for (51) and (52). The proof of (53) is similar to those for (51) and (52) and is not given here.

To prove (51) is true, we rewrite the right-hand side of (51) as double integrals

$$\begin{aligned}&\left( \int _0^t \sin (\omega (t-s)) \left( g(s)+ \frac{f(s)f_{\dot{x}}(s)}{2}\right) \,\mathrm{d}s \right) ^2 \\&\qquad + \left( \int _0^t \cos (\omega (t-s)) \left( g(s)+ \frac{f(s)f_{\dot{x}}(s)}{2}\right) \,\mathrm{d}s \right) ^2\\&= \int _0^t \int _0^t \Bigg [\sin (\omega (t-p))\sin (\omega (t-s))\nonumber \\&\qquad \times \left( g(p)+ \frac{f(p)f_{\dot{x}}(p)}{2}\right) \\&\quad \quad \times \left( g(s)+ \frac{f(s)f_{\dot{x}}(s)}{2}\right) \Bigg ] \mathrm{d}p\,\mathrm{d}s\\&\quad \quad + \int _0^t \int _0^t \Bigg [ \cos (\omega (t-p))\cos (\omega (t-s))\\&\qquad \times \left( g(p)+ \frac{f(p)f_{\dot{x}}(p)}{2}\right) \\&\quad \quad \times \left( g(s)+ \frac{f(s)f_{\dot{x}}(s)}{2}\right) \Bigg ] \,\mathrm{d}p\,\mathrm{d}s\\&\quad =\int _0^t \int _0^t \Bigg [\cos (\omega (s-p))\left( g(p)+ \frac{f(p)f_{\dot{x}}(p)}{2}\right) \\&\quad \quad \times \left( g(s)+ \frac{f(s)f_{\dot{x}}(s)}{2}\right) \Bigg ]\,\mathrm{d}p\,\mathrm{d}s\\&\quad =2\int _0^t \int _0^s \Bigg [ \cos (\omega (s-p))\left( g(p)+ \frac{f(p)f_{\dot{x}}(p)}{2}\right) \\&\quad \quad \times \left( g(s)+ \frac{f(s)f_{\dot{x}}(s)}{2}\right) \Bigg ]\,\mathrm{d}p\,\mathrm{d}s. \end{aligned}$$

Similarly, to prove (52), we rewrite the right-hand side (52) as

$$\begin{aligned}&\left( \int _0^t \sin (\omega (t-s)) f(s) \,\mathrm{d}B(s) \right) ^2 \nonumber \\&\quad \quad \quad + \left( \int _0^t \cos (\omega (t-s)) f(s) \,\mathrm{d}B(s) \right) ^2 \nonumber \\&=\int _0^t \int _0^t \cos (\omega (s-p)) f(s)f(p) \,\mathrm{d}B(p) \,\mathrm{d}B(s). \end{aligned}$$
(56)

The integral domain for the right-hand side of (56) is a square given by \(A=\{(s,p) \big | s\in [0,t], p\in [0, t]\}\). Decompose the square into three parts:

$$\begin{aligned} A_1= & {} \{(s,p)~\big | ~0~\le ~s<p~ \le ~t\},\\ A_2= & {} \{(s,p)\big | 0\le p<s\le t\}, \end{aligned}$$

and

$$\begin{aligned} A_3=\{(s,s) \big | 0\le s \le t\}, \end{aligned}$$

then the right-hand side of (56) becomes

$$\begin{aligned}&\int _0^t \int _0^t \cos (\omega (s-p)) f(s)f(p) \,\mathrm{d}B(p) \,\mathrm{d}B(s)\nonumber \\&=\iint \limits _{A_1+A_2+A_3} \cos (\omega (s-p)) f(s) f(p) \,\mathrm{d}B(p) \,\mathrm{d}B(s). \end{aligned}$$
(57)

Note that

$$\begin{aligned}&\iint _{A_1} \cos (\omega (s-p)) f(s) f(p) \,\mathrm{d}B(p) \,\mathrm{d}B(s)\nonumber \\&= \iint _{A_2} \cos (\omega (s-p)) f(s)f(p) \,\mathrm{d}B(p) \,\mathrm{d}B(s) \nonumber \\&= \int _0^t \int _0^s \cos (\omega (s-p)) f(s)f(p) \,\mathrm{d}B(p) \,\mathrm{d}B(s), \end{aligned}$$
(58)

and

$$\begin{aligned}&\iint _{A_3} \cos (\omega (s-p)) f(s)f(p) \,\mathrm{d}B(p) \,\mathrm{d}B(s)\nonumber \\&\quad =\int _0^t f^2(s) \,\mathrm{d}s. \end{aligned}$$
(59)

It follows from (58) and (59) that (52) is true.

Adding Eqs. (51) to (55), we get LHS \(=\) RHS, and hence, (33) is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Duan, J. & Li, X. Stochastic modeling of nonlinear oscillators under combined Gaussian and Poisson white noise: a viewpoint based on the energy conservation law. Nonlinear Dyn 84, 1311–1325 (2016). https://doi.org/10.1007/s11071-015-2570-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2570-7

Keywords

Navigation