Skip to main content
Log in

Dynamics of spatial rigid–flexible multibody systems with uncertain interval parameters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A non-intrusive computation methodology is proposed to study the dynamics of rigid–flexible multibody systems with a large number of uncertain interval parameters. The rigid–flexible multibody system is meshed by using a unified mesh of the absolute nodal coordinate formulation (ANCF). That is, the flexible parts are meshed by using the finite elements of the ANCF, while the rigid parts are described via the ANCF reference nodes (ANCF-RNs). Firstly, the interval differential-algebraic equations are directly transformed into the nonlinear interval algebraic equations by using the generalized-alpha algorithm. Then, the Chebyshev sampling methods, including Chebyshev tensor product sampling method and Chebyshev collocation method, are used to transform the nonlinear interval algebraic equations into sets of nonlinear algebraic equations with deterministic sampling parameters. The proposed computation methodology is non-intrusive because the original generalized-alpha algorithm is not amended. OpenMP directives are also used to parallelize the solving process of these deterministic nonlinear algebraic equations. To circumvent the interval explosion problem and maintain computation efficiency, the scanning method is used to determine the upper and lower bounds of the deducted Chebyshev surrogate models. Finally, two numerical examples are studied to validate the proposed methodology. The first example is used to check the effectiveness of the proposed methodology. And the second one of a complex rigid–flexible robot with uncertain interval parameters shows the effectiveness of the proposed computation methodology in the dynamics analysis of complicated spatial rigid–flexible multibody systems with a large number of uncertain interval parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\(\mathbf{q}\) :

Nodal coordinates

\(\mathbf{M}\) :

System mass matrix

\(\mathbf{S}^{kr}\) :

Transformation matrix of ANCF-RN

\(\varvec{\upomega }\) :

ANCF-RN angular velocity

\(\varvec{\upalpha }\) :

ANCF-RN angular acceleration

\(\mathbf{T}\) :

External torque

\(\varvec{\Phi }\) :

System constraint equations

\(\mathbf{Q}\) :

External force vector

\(\mathbf{V}\) :

Solution vector of deterministic dynamics systems

\(\varvec{\upzeta }\) :

Deterministic system parameter vector

\({[}\varvec{\varsigma }{]}\) :

Interval parameter vector

\({[}\hat{{\mathbf{V}}}{]}\) :

Interval solution vector of uncertain dynamics system

\(\phi _j \) :

Chebyshev interpolation points

\(\mathbf{U}\) :

Chebyshev polynomial vector

\(C_p (x)\) :

Chebyshev polynomial of degree p

\(\hat{{C}}_{a_1 a_2 \ldots a_k } \left( \mathbf{x} \right) \) :

k-dimensional Chebyshev polynomial

\(\varvec{\Psi }\) :

CTP sample vectors

\(\hat{\mathbf{K}}\) :

CTP surrogate coefficient matrix

\(\hat{\mathbf{U}}\left( \mathbf{x} \right) \) :

CTP polynomial vector

\(\hat{\varvec{\Psi }}\) :

CCM sample vectors

\(\hat{\hat{\mathbf{K}}}\) :

CCM surrogate coefficient matrix

\(\hat{\hat{\mathbf{U}}}\left( \mathbf{x} \right) \) :

CCM polynomial vector

References

  1. Benosman, M., Vey, G.L.: Control of flexible manipulators: a survey. Robotica 22, 533–545 (2004)

    Article  Google Scholar 

  2. Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators—a literature review. Mech. Mach. Theory 41, 749–777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Shabana, A.A.: Flexible multibody dynamics review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8(3), 031016–031016-12 (2013)

  5. Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems history, formalisms, and applications. J. Comput. Nonlinear Dyn. 1, 3–12 (2006)

    Article  Google Scholar 

  6. Schiehlen, W.: Research trends in multibody system dynamics. Multibody Syst. Dyn. 18, 3–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606–613 (2000)

    Article  Google Scholar 

  8. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123(4), 614–621 (2000)

    Article  Google Scholar 

  9. Sugiyama, H., Suda, Y.: A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates. Proc. IMechE Part K J. Multi-body Dyn. 221(2), 219–231 (2007)

    Google Scholar 

  10. Shabana, A.A., Christensen, A.P.: Three-dimensional absolute nodal co-ordinate formulation plate problem. Int. J. Numer. Methods Eng. 40, 2775–2790 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. IMechE Part K J. Multi-body Dyn. 219, 345–355 (2005)

    Google Scholar 

  12. Shabana, A. A.: ANCF reference node for multibody system analysis. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. Technical Note (2014). doi: 10.1177/1464419314546342

  13. Shabana, A.A.: ANCF tire assembly model for multibody system applications. J. Comput. Nonlinear Dyn. 10(1), 024504–024504-4 (2015)

    Article  MathSciNet  Google Scholar 

  14. Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81, 1841–1869 (2015)

    Article  MathSciNet  Google Scholar 

  15. Tian, Q., Xiao, Q.F., Sun, Y.L., Hu, H.Y., Liu, H., Flores, P.: Coupling dynamics of a geared multibody system supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33(3), 259–284 (2015)

    Article  MathSciNet  Google Scholar 

  16. Isukapalli, S.S.: Uncertainty Analysis of Transport-Transformation Models. The State University of New Jersey, New Brunswick (1999)

    Google Scholar 

  17. Wu, J.L., Luo, Z., Zhang, Y.Q., Zhang, N., Chen, L.: Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int. J. Numer. Methods Eng. 95(7), 608–630 (2013)

    Article  MathSciNet  Google Scholar 

  18. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York (1996)

    Book  MATH  Google Scholar 

  19. Jensen, H.A., Valdebenito, M.A.: Reliability-based optimization of stochastic systems using line search. Comput. Methods Appl. Mech. Eng. 198, 3915–3924 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M.: Response surface methodology: process and product optimization using designed experiments. Technometrics 38(3), 284–286 (1996)

    Article  MATH  Google Scholar 

  21. Ghanem, R., Spanos, P.: Polynomial chaos in stochastic finite element. J. Appl. Mech. 57(1), 197–202 (1990)

    Article  MATH  Google Scholar 

  22. Tatang, M.A.: Combined Stochastic and Deterministic Approach in Solving Stochastic Differential Equations. Carnegie Mellon University, Pittsburgh, Commonwealth of Pennsylvania (1992)

    Google Scholar 

  23. Tatang, M.A.: Direct Incorporation of Uncertainty in Chemical and Environmental Engineering Systems. Massachusetts Institute of Technology, Cambridge (1995)

    Google Scholar 

  24. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kewlani, G., Iagnemma, K.: A stochastic response surface approach to statistical prediction of mobile robot mobility. IEEE/RSJ. In: Proceedings of the International Conference on Intelligent Robots and Systems, Nice, France. pp. 2234–2239 (2008)

  26. Sandu, A., Sandu, C., Ahmadian, M.: Modeling multibody systems with uncertainties. Part I: theoretical and computational aspects. Multibody Syst. Dyn. 15(4), 369–391 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sandu, C., Sandu, A., Ahmadian, M.: Modeling multibody systems with uncertainties. Part II: numerical applications. Multibody Syst. Dyn. 15(3), 241–262 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Negrut, D., Jay, L.O., Khude, N.: A discussion of low-order numerical integration formulas for rigid and flexible multibody dynamics. J. Comput. Nonlinear Dyn. 4(2), 021008–021008-11 (2007)

    Article  Google Scholar 

  29. Revol, N., Makino, K., Berz, M.: Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY. J. Logic Algebr. Program. 64(1), 135–154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  31. Gao, W.: Natural frequency and mode shape analysis of structures with uncertainty. Mech. Syst. Signal Process. 21(1), 24–39 (2007)

    Article  Google Scholar 

  32. Wu, J.L., Zhang, Y.Q., Chen, L.P., Luo, Z.: A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl. Math. Model. 37(6), 4578–4591 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, J.L., Luo, Z., Zhang, Y.Q., Zhang, N., Chen, L.P.: Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int. J. Numer. Methods Eng. 95(7), 608–630 (2013)

    Article  MathSciNet  Google Scholar 

  34. Alefeld, G.: Interval analysis: theory and applications. J. Comput. Appl. Math. 121, 421–464 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jackson, K.R., Nedialkov, N.S.: Some recent advances in validated methods for IVPs for ODEs. Appl. Numer. Math. 42(1–3), 269–284 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Makino, K., Berz, M.: Efficient control of the dependency problem based on Taylor model methods. Reliab. Comput. 5(1), 3–12 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu, J.L., Zhao, Y., Chen, S.: An improved interval analysis method for uncertain structures. Struct. Eng. Mech. 20(6), 713–726 (2005)

    Article  Google Scholar 

  38. Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for parametric ODEs. Appl. Numer. Math. 57(10), 1145–1162 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Warten, R.M.: Automatic step-size control for Rung–Kutta integration. IBM J. Res. Dev. 7(4), 340–341 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  40. Newmark, N.M.: A method of computation for structural dynamics. ASCE J. Eng. Mech. Div. 85, 67–94 (1959)

    Google Scholar 

  41. Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On an implementation of the Hilber–Hughes–Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics. ASME J. Comput. Nonlinear Dyn. 2(1), 73–85 (2007)

    Article  Google Scholar 

  42. Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wu, J.L., Luo, Z., Zhang, N., Zhang, Y.Q.: A new interval uncertain optimization method for structures using Chebyshev surrogate models. Comput. Struct. 146, 185–196 (2015)

    Article  Google Scholar 

  44. Buras, A.J., Jamin, M., Lautenbacher, M.: A 1996 analysis of the CP. Violating ratio \(\varepsilon ^{\prime }/\varepsilon \). Phys. Lett. B. 389(4), 749–756 (1996)

    Google Scholar 

  45. Wu, J.L., Luo, Z., Zhang, N., Zhang, Y.Q.: A new sampling scheme for developing metamodels with the zeros of Chebyshev polynomials. Eng. Optim. 47(9), 1264–1288 (2014)

    Article  MathSciNet  Google Scholar 

  46. Jalon, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems. Springer, Berlin (2012)

    Google Scholar 

  47. Jalón, J.G.D.: Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18(1), 15–33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. García-Vallejo, D., Escalona, J.L., Mayo, J., Domínguez, J.: Describing rigid–flexible multibody systems using absolute coordinates. Nonlinear Dyn. 34(1–2), 75–94 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  50. Sopanen, J., Mikkola, A.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34, 53–74 (2003)

    Article  MATH  Google Scholar 

  51. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Sys. Dyn. 20, 359–384 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Shen, Z., Li, P., Liu, C., Hu, G.: A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation. Nonlinear Dyn. 77, 1019–1033 (2014)

    Article  Google Scholar 

  53. García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Three-dimensional formulation of rigid–flexible multibody systems with flexible beam elements. Multibody Syst. Dyn. 20(1), 1–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Hong, J.Z.: Computational Dynamics of Multibody Systems. Higher Education Press, Beijing (1999). (in Chinese)

    Google Scholar 

  55. Liu, C., Tian, Q., Hu, H.Y., García-Vallejo, D.: Simple formulations of imposing moments and evaluating joint reaction forces for rigid–flexible multibody systems. Nonlinear Dyn. 69, 127–147 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Liu, C., Tian, Q., Hu, H.Y.: Dynamics and control of a spatial rigid–flexible multibody system with multiple cylindrical clearance joints. Mech. Mach. Theory 52, 106–129 (2012)

    Article  Google Scholar 

  57. Jeffery, J.: Numerical Analysis and Scientific Computation. Addison Wesley, Boston (2004)

    Google Scholar 

  58. Liu, C., Tian, Q., Hu, H.Y.: Dynamics of a large scale rigid–flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26, 283–305 (2011)

    Article  MATH  Google Scholar 

  59. Hussein, B., Negrut, D., Shabana, A.A.: Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations. Nonlinear Dyn. 54, 283–296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Tian, Q., Zhang, Y.Q., Chen, L.P., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4, 021009 (2009)

    Article  Google Scholar 

  61. Shabana, A.A., Hussein, B.: A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: application to multibody systems. J. Sound Vib. 327, 557–563 (2009)

    Article  Google Scholar 

  62. Hussein, B., Shabana, A.A.: Sparse matrix implicit numerical integration of the stiff differential/algebraic equation: implementation. Nonlinear Dyn. 65, 369–382 (2011)

    Article  MathSciNet  Google Scholar 

  63. Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method. J. Mech. Appl. Math. 60, 371–375 (1993)

    MathSciNet  MATH  Google Scholar 

  64. Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2010)

    Article  MATH  Google Scholar 

  65. Tian, Q., Zhang, Y.Q., Chen, L.P., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87, 913–929 (2009)

    Article  Google Scholar 

  66. Liu, Z.Z., Wang, T.S., Li, J.F.: A trigonometric interval method for dynamic response analysis of uncertain nonlinear systems. Sci. China Phys. Mech. Astron. 58, 044501-1–044501-13 (2015)

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by National Natural Science Foundations of China under Grants 11290151 and 11472042. The research was also supported in part by the Beijing Higher Education Young Elite Teacher Project under Grant YETP1201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Tian, Q. & Hu, H. Dynamics of spatial rigid–flexible multibody systems with uncertain interval parameters. Nonlinear Dyn 84, 527–548 (2016). https://doi.org/10.1007/s11071-015-2504-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2504-4

Keywords

Navigation