Skip to main content
Log in

Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 13 August 2018

Abstract

The cable equation plays a central role in many areas of electrophysiology and in modeling neuronal dynamics. This paper reports an accurate spectral collocation method for solving one- and two-dimensional variable-order fractional nonlinear cable equations. The proposed method is based on shifted Jacobi collocation procedure in conjunction with the shifted Jacobi operational matrix for variable-order fractional derivatives, described in the sense of Caputo. The main advantage of the proposed method is to investigate a global approximation for spatial and temporal discretizations. In addition, the method reduces the variable-order fractional nonlinear cable equation to a simpler problem that consists of solving a system of algebraic equations. The validity and effectiveness of the method are demonstrated by solving three numerical examples. The convergence of the method is graphically analyzed. The results demonstrate that the proposed method is a powerful algorithm with high accuracy for solving the variable-order nonlinear partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bagley, R., Calico, R.: Fractional order state equations for the control of visco-elastically damped structures. J. Guid. Control Dyn. 14, 304–311 (1991)

    Article  Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, 198. Academic Press, San Diego, CA (1999)

    Google Scholar 

  3. Pinto, C.M.A., Tenreiro Machado, J.A.: Complex order vander Pol oscillator. Nonlinear Dyn. 65, 247–254 (2011)

    Article  MathSciNet  Google Scholar 

  4. Baleanu, D., Muslih, S.I., Rabei, E.M.: On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 53, 67–74 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Valerio, D., Trujillo, J.J., Rivero, M., Tenreiro Machado, J.A., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222, 1827–1846 (2013)

    Article  Google Scholar 

  6. Laskin, N.: Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 298, 298–305 (2000)

    Article  MathSciNet  Google Scholar 

  7. Guo, X., Xu, M.: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47, 82104 (2006)

    Article  MathSciNet  Google Scholar 

  8. Bohannan, G.: Analog fractional order controller in temperature and motor control applications. J. Vibr. Control 14, 1487–1498 (2008)

    Article  MathSciNet  Google Scholar 

  9. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, New York (2008)

    MATH  Google Scholar 

  10. Bhrawy, A.H., Alofi, A.S.: The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 26, 25–31 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Machado, J.A.T.: Numerical calculation of the left and right fractional derivatives. J. Comput. Phys. (2014). doi:10.1016/j.jcp.2014.05.029

  12. Jesus, I.S., Machado, J.A.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54, 263–282 (2008)

    Article  MATH  Google Scholar 

  13. Hajji, M.A., Al-Mdallal, Q.M., Allan, F.M.: An efficient algorithm for solving higher-order fractional SturmLiouville eigenvalue problems. J. Comput. Phys. 272, 550–558 (2014)

    Article  MathSciNet  Google Scholar 

  14. Atangana, A., Secer, A., The time-fractional coupled-Korteweg–de-Vries equations. Abst. Appl. Anal. Article ID 947986, 8 (2013)

  15. Bhrawy, A.H., Alhamed, Y.A., Baleanu, D., Al-Zahrani, A.A.: New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions. Fract. Calc. Appl. Anal. 17, 1137–1157 (2014)

    Article  MathSciNet  Google Scholar 

  16. Liu, Y., Fang, Z., Li, H., He, S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703–717 (2014)

    Article  MathSciNet  Google Scholar 

  17. Zayernouri, M., Karniadakis, G.E.: Discontinuous spectral element methods for time- and space-fractional advection equations. SIAM J. Sci. Comput. 36, B684–B707 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. (2014). doi:10.1016/j.jcp.2014.03.039

    Google Scholar 

  19. Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transform Spec. Funct. 1, 277–300 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Samko, S.G.: Fractional integration and differentiation of variable order. Anal. Math. 21, 213–236 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Samko, S.: Fractional integration and differentiation of variable order: an overview. Nonlinear Dyn. 71, 653–662 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pedro, H.T.C., Kobayashi, M.H., Pereira, J.M.C., Coimbra, C.F.M.: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14, 1659–1672 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Malinowska, A.B., Torres, D.F.M.: Fractional Calculus of Variations. Imperial College Press, Singapore (2012)

    MATH  Google Scholar 

  24. Diaz, G., Coimbra, C.F.M.: Nonlinear dynamics and control of a variable order oscillator with application to the vander Pol equation. Nonlinear Dyn. 56, 145–157 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Atanackovic, T.M., Janev, M., Pilipovic, S., Zorica, D.: An expansion formula for fractional derivatives of variable order. Cent. Eur. J. Phys. 11(10), 1350–1360 (2013)

    Article  Google Scholar 

  26. Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12, 692–703 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Soon, C.M., Coimbra, F.M., Kobayashi, M.H.: The variable viscoelasticity oscillator. Ann. Phys. 14(6), 378–389 (2005)

    Article  MATH  Google Scholar 

  28. Ramirez, L.E.S., Coimbra, C.F.M.: Variable order constitutive relation for viscoelasticity. Ann. Phys. 16, 543–552 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Atangana, A., Cloot, A.H.: Stability and convergence of the space fractional variable-order Schr ödinger equation. Adv. Differ. Equ. 1, 1–10 (2013)

    MathSciNet  Google Scholar 

  30. Bazhlekova, E.G., Dimovski, I.H.: Exact solution for the fractional cable equation with nonlocal boundary conditions. Cent. Eur. J. Phys. 11(10), 1304–1313 (2013)

    Article  Google Scholar 

  31. Sheng, H., Sun, H.G., Coopmans, C., Chen, Y.Q., Bohannan, G.W.: A Physical experimental study of variable-order fractional integrator and differentiator. Eur. Phys. J. Spec. Top. 193, 93–104 (2011)

    Article  Google Scholar 

  32. Sun, H.G., Chen, W., Chen, Y.Q.: Variable order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)

    Article  Google Scholar 

  33. Sun, H.G., Chen, W., Wei, H., Chen, Y.Q.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193(1), 185–192 (2011)

    Article  Google Scholar 

  34. Razminia, A., Dizaji, A.F., Majd, V.J.: Solution existence for non-autonomous variable-order fractional differential equations. Math. Comput. Modell. 55, 1106–1117 (2011)

    Article  MathSciNet  Google Scholar 

  35. Zhang, S.: Existence and uniqueness result of solutions to initial value problems of fractional differential equations of variable-order. J. Frac. Calc. Anal. 4(1), 82–98 (2013)

    Google Scholar 

  36. Zhang, S.: Existence result of solutions to differential equations of variable-order with nonlinear boundary value conditions. Commun. Nonlinear Sci. Numer. Simul. 18, 3289–3297 (2013)

    Article  MathSciNet  Google Scholar 

  37. Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435–445 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Chen, C.M., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equation. SIAM J. Sci. Comput. 32(4), 1740–1760 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Chen, C.M., Liu, F., Anh, V., Turner, I.: Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term. Appl. Math. Comput. 217, 5729–5742 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Zhao, X., Sun, Z.-Z., Em, G.: Karniadakis, Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. (2014). doi:10.1016/j.jcp.2014.08.015

  42. Langlands, T.A.M., Henry, B.I., Wearne, S.L.: Fractional cable equation models for anomalous electrodiffusion in nerve cells: finite domain solutions. SIAM. J. Appl. Math. 71, 1168–1203 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  43. Henry, B., Langlands, T., Wearne, S.L.: Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 100, 128103–128106 (2008)

    Article  Google Scholar 

  44. Langlands, T., Henry, B., Wearne, S.L.: Fractional Cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J. Math. Biol. 59(6), 761–808 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  45. Langlands, T., Henry, B., Wearne, S.L.: Solution of a fractional cable equation: finite case. Applied Mathematics Report AMR05/33, University of New South Wales (2005)

  46. Liu, F., Yang, Q., Turner, I.: Stability and convergence of two new implicit numerical methods for fractional cable equation. In: Proceeding of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE, San Diego, California, USA (2009)

  47. Hu, X., Zhang, L.: Implicit compact difference schemes for the fractional cable equation. Appl. Math. Model. 36, 4027–4043 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  48. Cavlak, M.E., Bayram, M.: An approximate solution of fractional cable equation by homotopy analysis method. Bound. Value Problems 2014(1), 58 (2014)

  49. Chen, C.M., Liu, F., Burrage, K.: Numerical analysis for a variable-order nonlinear cable equation. J. Comput. Appl. Math. 236, 209–224 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  50. Chen, Y., Liu, L., Li, B., Sun, Y.: Numerical solution for the variable order linear cable equation with Bernstein polynomials. Appl. Math. Comput. 238, 329–341 (2014)

    Article  MathSciNet  Google Scholar 

  51. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  52. Khalil, H., Khan, R.A.: A new method based on Legendre polynomials for solutions of the fractional two-dimensional heat conduction equation. Comput. Math. Appl. 67(10), 1938–1953 (2014)

    Article  MathSciNet  Google Scholar 

  53. Bhrawy, A.H.: A Jacobi–Gauss–Lobatto collocation method for solving generalized Fitzhugh–Nagumo equation with time-dependent coefficients. Appl. Math. Comput. 222, 255–264 (2013)

    Article  MathSciNet  Google Scholar 

  54. Doha, E.H., Bhrawy, A.H., Abdelkawy, M.A., Hafez, R.M.: A Jacobi collocation approximation for nonlinear coupled viscous Burgers’ equation. Cent. Eur. J. Phys. 12, 111–122 (2014)

    Article  Google Scholar 

  55. Graef, J.R., Kong, L., Wang, M.: A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems. Appl. Math. Comput. 241, 140–150 (2014)

    Article  MathSciNet  Google Scholar 

  56. Bhrawy, A.H., Baleanu, D.: A spectral Legendre–Gauss–Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients. Rep. Math. Phys. 72, 219–233 (2013)

  57. Doha, E.H., Bhrawy, A.H., Baleanu, D., Hafez, R.M.: A new Jacobi rational–Gauss collocation method for numerical solution of generalized pantograph equations. Appl. Numer. Math. 77, 43–54 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  58. Doha, E.H., Bhrawy, A.H., Abdelkawy, M.A., Van Gorder, R.A.: Jacobi–Gauss–Lobatto collocation method for the numerical solution of nonlinear Schrodinger equations. J. Comput. Phys. 261, 244–255 (2014)

    Article  MathSciNet  Google Scholar 

  59. Graham, A.: Kronecker Products and Matrix Calculus: With Applications. Ellis Horwood Ltd., Chichester (1981)

    MATH  Google Scholar 

  60. Laub, A.J.: Matrix Analysis for Scientists and Engineers. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the referees for constructive comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Bhrawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhrawy, A.H., Zaky, M.A. Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn 80, 101–116 (2015). https://doi.org/10.1007/s11071-014-1854-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1854-7

Keywords

Navigation