Skip to main content
Log in

Symbolic computation of exact solutions for nonlinear evolution equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the invariant subspace method, a symbolic computation scheme and its corresponding MAPLE package are developed to construct exact solutions for nonlinear evolution equations. In the symbolic computation scheme, a crucial step is constructing the linear differential equations as invariant subspaces that systems of evolution equations admin and taking their solutions as subspaces to construct exact solutions. The MAPLE package is proved to provide an easy way for constructing exact solutions of evolution equations automatically by only inputting several necessary parameters. Three different types of examples are given to illustrate the scope and demonstrate the validity of our package, especially for wave equation. The results of the examples reveal that there are polynomial subspaces, trigonometric subspaces, exponential subspaces and other complex subspaces as invariant subspaces that evolutions equations admit. In addition, our MAPLE software package provides a helpful and easy-to-use tool in science and engineering to deal with a wide variety of (1+1) dimensional nonlinear evolution equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abbasbandy, S.: Solitary wave solutions to the KuramotoSivashinsky equation by means of the homotopy analysis method. Nonlinear Dyn. 52, 35–40 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277(45), 212–218 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fan, E., Zhang, H.: Bäcklund transformation and exact solutions for Whitham-Broer-Kaup equations in shallow water. Appl. Math. Mech. 19, 713–716 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Galaktionov, V., Svirshchevskii, S.: Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Chapman & Hall/CRC, London (2007)

    MATH  Google Scholar 

  5. Harrison, B.K.: Bäcklund transformation for the ernst equation of general relativity. Phys. Rev. Lett. 41, 1197–1200 (1978)

    Article  MathSciNet  Google Scholar 

  6. He, J., Wu, X.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30(3), 700–708 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hirota, R., Grammaticos, B., Ramani, A.: Soliton structure of the Drinfel’d–Sokolov–Wilson equation. J. Math. Phys. 27, 1499–1505 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li, Z., Liu, Y.: RAEEM: a maple package for finding a series of exact traveling wave solutions for nonlinear evolution equations. Comput. Phys. Commun. 163, 191–201 (2004)

    Article  MATH  Google Scholar 

  9. Ma, W.X.: A refined invariant subspace method and applications to evolution equations. Sci. China Math. 55, 1769–1778 (2012)

  10. Ma, W.X., Huang, T., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82(065), 003 (2010)

    Google Scholar 

  11. Ma, W.X., Liu, Y.: Invariant subspaces and exact solutions of a class of dispersive evolution equations. Commun. Nonlinear Sci. Numer. Simul. 17(10), 3795–3801 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Malfliet, W.: The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations. J. Comput. Appl. Math. 164–165(0), 529–541 (2004)

    Article  MathSciNet  Google Scholar 

  13. Misirli, E., Gurefe, Y.: Exact solutions of the Drinfeld–Sokolov–Wilson equation using the Exp-function method. Appl. Math. Comput. 216(9), 2623–2627 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Olver, P.: Applications of Lie Groups to Differential Equations. Springer, New York (2000)

    MATH  Google Scholar 

  15. Parkes, E., Duffy, B.: An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations. Comput. Phys. Commun. 98(3), 288–300 (1996)

    Article  MATH  Google Scholar 

  16. Qu, C., Zhu, C.: Classification of coupled systems with two-component nonlinear diffusion equations by the invariant subspace method. J. Phys. A Math. Theor. 42, 475,201 (2009)

    Article  MathSciNet  Google Scholar 

  17. Shen, S., Qu, C., Jin, Y., Ji, L.: Maximal dimension of invariant subspaces to systems of nonlinear evolution equations. Chin. Ann. Math. Ser. B 33(2), 161–178 (2012)

    Article  MathSciNet  Google Scholar 

  18. Svirshchevskii, S.: Invariant linear spaces and exact solutions of nonlinear evolution equations. J. Nonlinear Math. Phys. 3, 164–169 (1996)

    Article  MathSciNet  Google Scholar 

  19. Wang, Y., Tian, B., Wang, P., Li, M., Jiang, Y.: Bell-polynomial approach and soliton solutions for the Zhiber–Shabat equation and (2+1)-dimensional Gardner equation with symbolic computation. Nonlinear Dyn. 69, 2031–2040 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wazwaz, A.M.: The tanh method for traveling wave solutions of nonlinear equations. Appl. Math. Comput. 154(3), 713–723 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yao, R., Li, Z.: New exact solutions for three nonlinear evolution equations. Phys. Lett. A 297(34), 196–204 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Yao, Y.: Abundant families of new traveling wave solutions for the coupled Drinfel’d–Sokolov–Wilson equation. Chaos Solitons Fractals 24(1), 301–307 (2005)

    Article  MATH  Google Scholar 

  23. Zhao, X., Zhao, H.: An improved F-Expansion method and its application to coupled Drinfel’d–Sokolov–Wilson equation. Commun. Theor. Phys. 50, 309–314 (2008)

    Article  Google Scholar 

  24. Zhu, C., Qu, C.: Maximal dimension of invariant subspaces admitted by nonlinear vector differential operators. J. Math. Phys. 52, 043,507 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yezhi Lin.

Appendix: The usage of the software package ISM

Appendix: The usage of the software package ISM

The main interface is \(Isolve(Eqs, var, dim)\), where the parameter \(Eqs\) is a set of nonlinear evolution equations, \(var\) represents the independent variable appearing in the invariant subspaces, \(dim\) is the desired order of ordinary differential equations.

As an example to show how to use our software package ISM, we consider a Kuramoto–Sivashinsky equation [1]

$$\begin{aligned} u_t +a uu_x +b u_{xx}+ku_{4x}=0, \end{aligned}$$
(75)

To load the package ISM, one can proceed as follows:

  • \(>restart:\)    initializing Maple.

  • \(>read \,\,``ISM.mpl'': \) reading the program file into memory.

  • \(>with(ISM); \)    loading the package ADMP.

To solve Eq. (75), one can run the main procedure as follows:

  • \(>eq:=diff(u(t,x),t)+a*u*diff(u(t,x),x)+b*diff(u(t,x),x\$2)+k*diff(u(t,x),x\$4)=0;\)

  • \(>Isolve([eq1], x, [2]);\)

Our package automatically outputs the following results:

[1] Obtain the evolution equation(s) is/are

$$\begin{aligned} u_t +a uu_x +b u_{xx}+ku_{4x}=0, \end{aligned}$$

which admits an invariant subspace defined by

$$\begin{aligned} \frac{dy_1(x)}{d x^2} = 0 \end{aligned}$$

The invariant condition is

$$\begin{aligned} \left\{ \_a_0 = 0, \_a_1 = 0, a = a\right\} . \end{aligned}$$

Then, the exact solutions are listed as follows:

$$\begin{aligned} \left[ u(t, x) = \_F_1(t)x+\_F_2(t)\right] , \end{aligned}$$

where the coefficients can be determined by the following

$$\begin{aligned} \left\{ \begin{aligned}&a\_F_1(t)^2+\frac{\partial \_F_1(t)}{\partial t} 0, \\&a\_F_1(t)\_F_2(t)+\frac{\partial \_F_2(t)}{\partial t} = 0. \end{aligned} \right. \end{aligned}$$

Its solution reads

$$\begin{aligned} \left\{ \_F_1(t) = \frac{1}{a t+\_C_2},\quad \_F_2(t) = \frac{\_C_1}{a t+\_C_2}\right\} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Lin, Y. Symbolic computation of exact solutions for nonlinear evolution equations. Nonlinear Dyn 79, 823–833 (2015). https://doi.org/10.1007/s11071-014-1705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1705-6

Keywords

Navigation