Skip to main content
Log in

Nonlinear dynamics of a delayed Leslie predator–prey model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The present paper is concerned with a delayed Leslie predator–prey model. The conditions of boundedness of the solutions of the system, existence, and stability of the equilibrium of the system are investigated. Meanwhile, we find that the system can also undergo a Hopf bifurcation of nonconstant periodic solution at the positive equilibrium when the delay crosses through a sequence of critical values. The extensive simulations carried out show that the bifurcations arise around the positive equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Leslie, P.H., Gower, J.C.: The properties of a stochastic model for the predator–prey type of interaction between two species. Biometrika 47, 219–234 (1960)

    MATH  MathSciNet  Google Scholar 

  2. Murray, J.D.: Mathematical Biology. Springer, New York (1993)

    MATH  Google Scholar 

  3. Hsu, S.B., Hwang, T.W.: Global stability for a class of predator–prey systems. SIAM J. Appl. Math. 55, 763–783 (1995)

    MATH  MathSciNet  Google Scholar 

  4. Saez, E., Gonzalez-Olivares, E.: Dynamics of predator–prey model. SIAM J. Appl. Math. 59, 1867–1878 (1999)

    MATH  MathSciNet  Google Scholar 

  5. Saha, T., Chakrabarti, C.: Dynamical analysis of a delayed ratio-dependent Holling. Tanner predator–prey model. J. Math. Anal. Appl. 358, 389–402 (2009)

    MATH  MathSciNet  Google Scholar 

  6. Qu, Y., Wei, J.: Bifurcation analysis in a time-delay model for prey–predator growth with stage-structure. Nonlinear Dyn. 49, 285–294 (2007)

    MATH  MathSciNet  Google Scholar 

  7. Fan, D., Wei, J.: Bifurcation analysis of discrete survival red blood cells model. Commun. Nonlinear Sci. Numer. Simul. 14, 3358–3368 (2009)

    MATH  MathSciNet  Google Scholar 

  8. Hu, G.P., Li, X.L.: Stability and Hopf bifurcation for a delayed predator–prey model with disease in the prey. Chaos, Solitons Fractals 45, 229–237 (2012)

    MATH  MathSciNet  Google Scholar 

  9. Kuang, Y.: Delay Differ. Equ. Appl. Popul. Dyn. Academic Press, New York (1993)

    Google Scholar 

  10. Shi, H.B., Li, W.T., Lin, G.: Positive steady states of a diffusive predator–prey system with modified Holling–Tanner functional response. Nonlinear Anal. Real World Appl. 11, 3711–3721 (2010)

    MATH  MathSciNet  Google Scholar 

  11. Sun, X.K., Huo, H.F., Xiang, H.: Bifurcation and stability analysis in predator–prey model with a stage-structure for predator. Nonlinear Dynam. 58, 497–513 (2009)

    MATH  MathSciNet  Google Scholar 

  12. Berryman, A.A.: The origins and evolution of predator–prey theory. Ecology 73, 1530–1535 (1992)

    Google Scholar 

  13. Braza, P.A.: The bifurcations structure for the Holling Tanner model for predator–prey interactions using two-timing. SIAM. J. Appl. Math. 63, 889–904 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Cushing, J.M.: Integrodifferential Equations and Delay Models in Population Dynamics. Springer, Heidelberg (1977)

  15. Xu, C., Shao, Y.: Bifurcations in a predator–prey model with discrete and distributed time delay. Nonlinear Dyn. 67, 2207–2223 (2012)

    MATH  MathSciNet  Google Scholar 

  16. Fan, Y.H., Wang, L.L.: Periodic solutions in a delayed predator–prey model with nonmonotonic functional response. Nonlinear Anal. Real World Appl. 10, 3275–3284 (2009)

    MATH  MathSciNet  Google Scholar 

  17. Haquea, M., Venturino, E.: The role of transmissible diseases in the Holling–Tanner predator–prey model. Theor. Pop. Biol. 70, 273–288 (2006)

    Google Scholar 

  18. Tanner, J.T.: The stability and intrinsic growth rates of prey and predator populations. Ecology 56, 855–867 (1975)

    Google Scholar 

  19. Yan, X.P., Li, W.T.: Hopf bifurcation and global periodic solutions in a delayed predator–prey system. Appl. Math. Comput. 177, 427–445 (2006)

    MATH  MathSciNet  Google Scholar 

  20. Cantrell, R.S., Cosner, C.: On the dynamics of predator–prey models with the Beddington–DeAngelis functional response. J. Math. Anal. Appl. 257, 206–222 (2001)

    MATH  MathSciNet  Google Scholar 

  21. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Animal Ecol. 44, 331–340 (1975)

    Google Scholar 

  22. DeAngelis, D.L., Goldstein, R.A., ONeill, R.V.: A model for trophic interaction. Ecology 56, 881–892 (1975)

    Google Scholar 

  23. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56, 65–75 (1999)

    MATH  Google Scholar 

  24. Ruxton, G., Gurney, W.S.C., DeRoos, A.: Interference and generation cycles. Theor. Popul. Biol. 42, 235–253 (1992)

    MATH  Google Scholar 

  25. Hwang, T.W.: Global analysis of the predator–prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 281, 395–401 (2003)

    MATH  MathSciNet  Google Scholar 

  26. Hale, J.K.: Theory of Functional Differential Equations. Spring, New York (1977)

    MATH  Google Scholar 

  27. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Camb. Univ. Press, Cambridge (1981)

    MATH  Google Scholar 

  28. Meng, X.Y., Huo, H.F., Zhang, X.B., Xiang, H.: Stability and Hopf bifurcation in a three-species system with feedback delays. Nonlinear Dyn. 64, 349–364 (2011)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the anonymous reviewers for their careful reading, useful comments, and constructive suggestions for the improvement of the manuscript of the present research work. The research of the first author was supported by the NNSF of China (11226153,11301147), the Science and Technology Research Foundation Awarded by Educational Commission of Henan Province of China (14A110021), and the Fundamental Research Fund of Henan University (2012YBZR032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Fang Zhang.

Appendix

Appendix

In this Appendix section, we shall study the stability of bifurcated periodic solutions arising through Hopf bifurcations by applying the normal form theory and center manifold theorem [27, 28]. Without loss of generality, we denote any one of these critical values \(\tau =\tau _j (j=0,1,\ldots )\) by \(\tilde{\tau }\), at which the characteristic Eq. (2.3) has a pair of purely imaginary roots \(\pm i\omega _+\).

We denote \(\tau \) as \(\tau =\tilde{\tau }+\mu \), \(\mu \in \mathbb {R}\). Then \(\mu =0\) is Hopf bifurcation value of system (2.1). We first rescale the time by \(t\rightarrow t/\tau \) to normalize the delay so that (2.1) can be written as

$$\begin{aligned} u'(t)=L_\mu u_{t}+F(u_{t},\mu ), \end{aligned}$$
(5.1)

in the phase space \(C=C([-1,0],\mathbb {R}^{2})\), where \(u=(u_1,u_2)^T\in C,\) and \(L_\mu : C\rightarrow \mathbb {R}, F: \mathbb {R}\times C\rightarrow \mathbb {R}\) are given respectively by

$$\begin{aligned} L_\mu \phi =(\tilde{\tau }+\mu )\left( \begin{array}{c}\alpha _{11}\phi _{1}(0) +a_{11}\phi _{1}(-1) +\alpha _{12}\phi _{2}(0) \\ \alpha _{21}\phi _{1}(0)+ \alpha _{22}\phi _{2}(0)\end{array}\right) ,\nonumber \\ \end{aligned}$$
(5.2)

and

$$\begin{aligned} F(\phi ,\mu )=(\tilde{\tau }+\mu )\left( \begin{array}{c} \sum \nolimits _{i+j\ge 2}\frac{1}{i!j!}f^{(1)}_{ij}\phi ^i_1(0)\phi ^j_2(0)\\ \sum \nolimits _{i+j\ge 2}\frac{1}{i!j!}f^{(2)}_{ij}\phi ^i_1(0)\phi ^j_2(0) \end{array}\right) .\nonumber \\ \end{aligned}$$
(5.3)

We introduce the formal Taylor expansions about \(\phi =(\phi _1,\phi _2)^T\) as follows

$$\begin{aligned} F(\phi ,\mu )=\frac{1}{2!}F_2(\phi ,\mu ) +\frac{1}{3!}F_3(\phi ,\mu )+o(|\phi |^4), \end{aligned}$$

where

$$\begin{aligned} \frac{1}{m!}F_m(\phi ,\mu )=(\tilde{\tau }+\mu )\left( \begin{array}{c} \sum \nolimits _{i+j=m}\frac{1}{i!j!}f^{(1)}_{ij}\phi ^i_1(0)\phi ^j_2(0)\\ \sum \nolimits _{i+j=m}\frac{1}{i!j!}f^{(2)}_{ij}\phi ^i_1(0)\phi ^j_2(0) \end{array}\right) . \end{aligned}$$

where \(m=2,3\).

Then \(L_\mu \) is a continuous linear function mapping \(C([-1,0],\mathbb {R}^{2})\) into \(\mathbb {R}^{2}\). By the Riesz representation theorem, there exists a matrix whose components are bounded variation functions \(\eta (\theta ,\mu )\) in \([-1,0]\), such that

$$\begin{aligned} L_\mu \phi =\int _{-1}^{0}d\eta (\theta ,\mu )\phi (\theta ),\ \ \phi \in C([-1,0],\mathbb {R}^{2}). \end{aligned}$$
(5.4)

In fact, we choose

$$\begin{aligned} \eta (\theta ,\mu )&= (\tilde{\tau }+\mu ) \left( \begin{array}{c@{\quad }c} \alpha _{11} &{}\alpha _{12} \\ \alpha _{21} &{}\alpha _{22} \end{array} \right) \delta (\theta )\nonumber \\&\quad -\,(\tilde{\tau }+\mu ) \left( \begin{array}{c@{\quad }c} a_{11} &{} 0 \\ 0&{}0 \end{array} \right) \delta (\theta +1), \end{aligned}$$
(5.5)

where \(\delta (\theta )\) is Dirac function. Then (5.4) is satisfied.

For \(\phi \in C^{1}([-1,0],\mathbb {R}^{2})\), define

$$\begin{aligned} A(\mu )\phi = \left\{ \begin{array}{l@{\quad }l} \frac{d\phi (\theta )}{d\theta } , &{} -1\le \theta <0,\\ \int _{-1}^{0}d\eta (s,\mu )\phi (s) ,&{} \theta =0, \end{array} \right. \end{aligned}$$
(5.6)

and

$$\begin{aligned} R(\mu )\phi =\left\{ \begin{array}{l@{\quad }l} 0 , &{} -1\le \theta <0, \\ F(\phi ,\mu ) ,&{}\theta =0. \end{array} \right. \end{aligned}$$
(5.7)

Then system (5.1) can be transformed into a operator differential equation of the form

$$\begin{aligned} u'_{t}=A(\mu )u_{t}+R(\mu )u_{t}, \end{aligned}$$
(5.8)

where \(u_{t}=u(t+\theta ), \theta \in [-1,0]\).

The adjoint operator \(A^{*}\) of \(A\) is defined by

$$\begin{aligned} A^{*}(\mu )\psi =\left\{ \begin{array}{l@{\quad }l} -\frac{d\psi (s)}{ds},&{} 0<s\le 1, \\ \int _{-1}^{0}\psi (-t)d\eta (t,0),&{} s=0, \end{array} \right. \end{aligned}$$
(5.9)

associated with a bilinear form

$$\begin{aligned}&<\psi (s),\phi (s)>= \overline{\psi (0)}\phi (0)\nonumber \\&\quad -\int _{\theta =-1}^{0}\int _{\xi =0}^{\theta }\overline{ \psi }^{T}(\xi -\theta )d\eta (\theta )\phi (\xi )d\xi , \end{aligned}$$
(5.10)

where \(\eta (\theta )=\eta (\theta ,0)\), we know that \(\pm i\omega _{+}\tilde{\tau }\) are eigenvalues of \(A(0)\). Thus they are also eigenvalues of \(A^{*}\).

It is easy to verify that

$$\begin{aligned} <q^*,q>=1,<q^*,\overline{q}>=0, \end{aligned}$$

where

$$\begin{aligned}&\begin{aligned} q(\theta )&=(1,\zeta )^{T}e^{i\theta \omega _{+}\tilde{\tau }}\\&= \left( 1,\frac{i\omega _{+}-\alpha _{11}-a_{11}e^{i \omega _{+}\tilde{\tau }}}{\alpha _{12}}\right) ^{T} e^{i\theta \omega _{+}\tilde{\tau }},\end{aligned}\\&\begin{aligned} q^{*}(s)&=D(\zeta ^{*},1)e^{is\omega _{+}\tilde{\tau }}\\&=D\left( \frac{-i\omega _{+}-\alpha _{22}}{\alpha _{12}},1 \right) e^{is\omega _{+}\tilde{\tau }}, \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \overline{D}=\frac{1}{\overline{\zeta }^*+\zeta -\tilde{\tau }[\alpha _{11}\zeta ^*+a_{11}\zeta ^*+\alpha _{21} +\alpha _{21}\zeta ^*\zeta +\alpha _{22}\zeta ]e^{-i\omega _{+}\tilde{\tau }}}. \end{aligned}$$

From [27], we first compute the coordinates to describe the center manifold \(C_0\) at \(\mu =0\). Let \(u_{t}\) be the solution of Eq. (5.1) when \(\mu =0\).

Define

$$\begin{aligned} z(t)=<q^{*}(s),u_{t}(\theta )>, \end{aligned}$$
$$\begin{aligned} W(t,\theta )&= (W^{(1)}(t,\theta ),W^{(2)}(t,\theta ))^T\nonumber \\&= u_{t}(\theta )-2Re\{z(t)q(\theta )\}. \end{aligned}$$
(5.11)

On the center manifold \(C_{0}\), we have

$$\begin{aligned} W(t,\theta )=W(z(t),\overline{z(t)},\theta ), \end{aligned}$$

where

$$\begin{aligned} W(z(t),\overline{z(t)},\theta )&= W_{20}(\theta )\frac{z^{2}}{2}+ W_{11}(\theta )z\overline{z}\nonumber \\&\quad +\,W_{02}(\theta )\frac{ \overline{z}^{2}}{2}+\cdots . \end{aligned}$$
(5.12)

In fact, \(z(t)\) and \(\overline{z(t)}\) are local coordinates of center manifold \(C_{0}\) in the direction of \(q\) and \(q^{*}\), respectively. For the solution \(u_{t}\in C_{0}\) of (5.8), since \(\mu =0\), we can obtain that \(<\psi ,A\phi >=<A^{*}\psi ,\phi >,\) for \((\phi ,\psi )\in D(A)\times D(A)\), then

$$\begin{aligned} z'(t)&= <q^{*},u_t'>=<q^{*},Au_{t}+Ru_{t}>\\&= <q^{*},Au_{t}>+<q^{*},Ru_{t}> \\&= <A^{*}q^{*},u_{t}>+<q^{*},Ru_{t}>\\&= \omega _{+}\tilde{\tau }zi+\overline{q}^{*}(0)F_{0}(z,\bar{z}). \end{aligned}$$

Thus

$$\begin{aligned} z'(t)=\omega _{+}\tilde{\tau } zi+\overline{q}^{*}(0)F_{0}(z,\bar{z}), \end{aligned}$$
(5.13)

that is

$$\begin{aligned} z'(t)=\omega _{+}\tilde{\tau }zi+g(z,\overline{z}), \end{aligned}$$
(5.14)

where

$$\begin{aligned} g(z,\overline{z})&= \frac{1}{2}g_{20}z^{2}+ g_{11}z\overline{z}+\frac{1}{2}g_{02}\overline{z}^{2}\nonumber \\&\quad +\,\frac{1}{2}g_{21}z^{2}\overline{z}+\cdots . \end{aligned}$$
(5.15)

From (5.11), we get

$$\begin{aligned} u_{t}(\theta )=(u_{1t}(\theta ),u_{2t}(\theta )) =W(t,\theta )+zq+\overline{z} \overline{q}, \end{aligned}$$

where

$$\begin{aligned} u_{i}(t+\theta )=W^{(i)}(t,\theta )+zq^{(i)} +\overline{z}\overline{q}^{(i)},(i=1,2,3). \end{aligned}$$

Thus, we have

$$\begin{aligned} g(z,\overline{z})&= \overline{q}^{*}(0)F_{0}(z,\overline{z})\\&= \overline{D}\tilde{\tau }(\overline{\zeta }^{*},1) \left( \begin{array}{c} \sum \nolimits _{i+j\ge 2}\frac{1}{i!j!}f^{(1)}_{ij}\phi ^i_1(0)\phi ^j_2(0)\\ \sum \nolimits _{i+j\ge 2}\frac{1}{i!j!}f^{(2)}_{ij}\phi ^i_1(0)\phi ^j_2(0) \end{array}\right) . \end{aligned}$$

Comparing the coefficients with (5.15), we have

$$\begin{aligned} g_{20}&= 2\overline{D}\tilde{\tau }\left( \frac{\overline{\zeta }^{*}}{2}f^{(1)}_{20} +\frac{\overline{\zeta }^{*}}{2}f^{(1)}_{02}\zeta ^2 +\overline{\zeta }^{*}f^{(1)}_{11}\zeta \right. \\&\quad \left. +\,\frac{1}{2}f^{(2)}_{20} +\frac{1}{2}f^{(2)}_{02}\zeta ^2 +f^{(2)}_{11}\zeta \right) , \\ g_{11}&= \overline{D}\tilde{\tau }\left( \frac{\overline{\zeta }^{*}}{2}f^{(1)}_{20}2 +\frac{\overline{\zeta }^{*}}{2}f^{(1)}_{02}2\zeta \overline{\zeta } +\overline{\zeta }^{*}f^{(1)}_{11}(\zeta +\overline{\zeta })\right. \\&\quad \left. +\,\frac{1}{2}f^{(2)}_{20}2 +\frac{1}{2}f^{(2)}_{02}2\zeta \overline{\zeta } +f^{(2)}_{11}(\zeta +\overline{\zeta })\right) , \\ g_{02}&= 2\overline{D}\tilde{\tau }\left( \frac{\overline{\zeta }^{*}}{2}f^{(1)}_{20} +\frac{\overline{\zeta }^{*}}{2}f^{(1)}_{02}\overline{\zeta }^2 +\overline{\zeta }^{*}f^{(1)}_{11}\overline{\zeta }\right. \\&\quad \left. +\,\frac{1}{2}f^{(2)}_{20} +\frac{1}{2}f^{(2)}_{02}\overline{\zeta }^2 +f^{(2)}_{11}\overline{\zeta } \right) ,\\ g_{21}&= 2\overline{D}\tilde{\tau }\left[ \left. \overline{\zeta }^{*}f^{(1)}_{20}\left( W_{11}^{(1)}(0)+\frac{W_{20}^{(1)}(0)}{2}\right) \right. \right. \\&\quad +\,\overline{\zeta }^{*}f^{(1)}_{02} \left( W_{11}^{(2)}(0)\zeta +\frac{W_{20}^{(2)}(0)\overline{\zeta }}{2} \right) \\&\quad +\,\overline{\zeta }^{*}f^{(1)}_{11}\left( W_{11}^{(1)}(0)\zeta +\frac{W_{20}^{(1)}(0)\overline{\zeta }}{2}\right. \\&\quad \left. +\,W_{11}^{(2)}(0)+\frac{W_{20}^{(2)}(0)}{2}\right) +\frac{\overline{\zeta }^{*}}{2}f^{(1)}_{30} +\frac{\overline{\zeta }^{*}}{2}f^{(1)}_{03}\zeta ^2\overline{\zeta } \\&\quad +\,\frac{\overline{\zeta }^{*}}{2}f^{(1)}_{21}(2\zeta +\overline{\zeta })+\frac{\overline{\zeta }^{*}}{2}f^{(1)}_{12}(2\zeta \overline{\zeta }+\zeta ^2)\\&\quad \times \, f^{(2)}_{20}\left( W_{11}^{(1)}(0)+\frac{W_{20}^{(1)}(0)}{2}\right) \\&\quad +\,f^{(2)}_{02}\left( W_{11}^{(2)}(0)\zeta +\frac{W_{20}^{(2)}(0)\overline{\zeta }}{2} \right) \\&\quad +\,f^{(2)}_{11}\left( W_{11}^{(1)}(0)\zeta +\frac{W_{20}^{(1)}(0)\overline{\zeta }}{2}\right. \\&\quad \left. +\,W_{11}^{(2)}(0)+\frac{W_{20}^{(2)}(0)}{2}\right) +\frac{1}{2}f^{(2)}_{30} +\frac{1}{2}f^{(2)}_{03}\zeta ^2\overline{\zeta } \\&\quad \left. +\,\frac{1}{2}f^{(2)}_{21}(2\zeta +\overline{\zeta })+\frac{1}{2}f^{(2)}_{12}(2\zeta \overline{\zeta }+\zeta ^2) \right] . \end{aligned}$$

According to (5.8), (5.11) and (5.13), we can obtain that

$$\begin{aligned} W'&= u_{t}-z'q-\overline{z}'\overline{q}\nonumber \\&= \left\{ \begin{array}{l@{\quad }l} A(0)W(t,\theta )-2Re[\overline{q}^{*}(0)F_{0}q(\theta )], &{}-1\le \theta \le 0,\\ A(0)W(t,\theta )-2Re[\overline{q}^{*}(0)F_{0}q(\theta )]+F_{0},&{} \theta =0 .\end{array} \right. \nonumber \\ \end{aligned}$$
(5.16)

Let

$$\begin{aligned} W'=A(0)W(t,\theta )+G(z,\overline{z},\theta ), \end{aligned}$$
(5.17)

where

$$\begin{aligned} G(z,\overline{z},\theta )=G_{20}(\theta )\frac{z^{2}}{2}+ G_{11}z\overline{z}+G_{02}\frac{\overline{z}^{2}}{2}+\cdots . \end{aligned}$$

According to (5.12), we have

$$\begin{aligned} A(0)W(t,\theta )&= A(0)W_{20}(\theta )\frac{z^{2}}{2}+ A(0)W_{11}(\theta )z\overline{z}\nonumber \\&\quad +\,A(0)W_{02}(\theta ) \frac{\overline{z}^{2}}{2}+\cdots . \end{aligned}$$
(5.18)

Differentiating two sides of (5.12) with respect to \(t\), we get

$$\begin{aligned} W'=W_{z}z'+W_{\overline{z}}\overline{z}'. \end{aligned}$$
(5.19)

From (5.18) and (5.19), we can obtain that

$$\begin{aligned}&[A(0)-2i\omega _+\tilde{\tau }I]W_{20}(\theta )\frac{z^{2}}{2}+ A(0)W_{11}(\theta )z\overline{z}\nonumber \\&\qquad +\,A(0)W_{02}(\theta ) \frac{\overline{z}^{2}}{2}+\cdots \nonumber \\&\quad =-G_{20}(\theta )\frac{z^{2}}{2}- G_{11}z\overline{z}-G_{02}\frac{\overline{z}^{2}}{2}-\cdots . \end{aligned}$$
(5.20)

Comparing the coefficients with (5.20), we can know that

$$\begin{aligned}&[A(0)-2i\omega _{+}\tilde{\tau }I]W_{20}(\theta ) =-G_{20}(\theta ),\end{aligned}$$
(5.21)
$$\begin{aligned}&A(0)W_{11}(\theta )=-G_{11}(\theta ). \end{aligned}$$
(5.22)

From (5.17), we have

$$\begin{aligned} G(z,\overline{z},\theta )&= -\overline{q}^{*}(0)F_{0}q(\theta ) -q^{*}(0)\overline{F}_{0}\overline{q}(\theta )\nonumber \\&= -g(z,\overline{z})q(\theta )-\overline{g}(z, \overline{z})\overline{q}(\theta ), \ -1\le \theta <0.\nonumber \\ \end{aligned}$$
(5.23)

So, we get

$$\begin{aligned}&G_{20}(\theta )=-g_{20}q(\theta )-\overline{g}_{02} \overline{q}(\theta ),\end{aligned}$$
(5.24)
$$\begin{aligned}&G_{11}(\theta )=-g_{11}q(\theta )-\overline{g}_{11} \overline{q}(\theta ). \end{aligned}$$
(5.25)

Then, together with (5.21) and (5.24), we can know that

$$\begin{aligned} W'_{20}=2i\omega _+\tilde{\tau }W_{20}+g_{20}q(\theta ) +\overline{g}_{20}\overline{q}(\theta ), \end{aligned}$$
(5.26)

so

$$\begin{aligned} W_{20}(\theta )&= \frac{ig_{20}q(0)}{\omega _{+} \tilde{\tau }}e^{i\omega _{+}\tilde{\tau }\theta } -\frac{\overline{g}_{02}\overline{q}(0)}{3i\omega _{+}\tilde{\tau }} e^{-i\omega _{+}\tilde{\tau }\theta }\nonumber \\&\quad +\,E_{1}e^{2i\omega _{+}\tilde{\tau }\theta }. \end{aligned}$$
(5.27)

Similarly, we get

$$\begin{aligned} W_{11}(\theta )&= \frac{g_{11}q(0)}{i\omega _{+} \tilde{\tau }}e^{i\omega _{+}\tilde{\tau }\theta }- \frac{\overline{g}_{11}\overline{q}(0)}{i\omega _{+} \tilde{\tau }}e^{-i\omega _{+}\tilde{\tau }\theta }\nonumber \\&\quad +\,E_{2}e^{2i\omega _{+}\tilde{\tau }\theta }, \end{aligned}$$
(5.28)

where

$$\begin{aligned} E_{1}=(E^{(1)}_{1},E^{(2)}_{1}), E_{2}=(E^{(1)}_{2},E^{(2)}_{2}). \end{aligned}$$

Next we focus on the computation of \(E_{1}\), \(E_{2}\). From (5.21) and (5.22), we get

$$\begin{aligned} \int _{-1}^{0}d\eta (\theta )W_{20}(\theta )&= 2i\omega _{+}\tilde{\tau }W_{20}(\theta )-G_{20}(\theta ),\end{aligned}$$
(5.29)
$$\begin{aligned} \int _{-1}^{0}d\eta (\theta )W_{11}(\theta )&= -G_{11}(\theta ). \end{aligned}$$
(5.30)

From (5.27), we can obtain that

$$\begin{aligned} \int _{-1}^{0}d\eta (\theta )W_{20}(\theta )&= \frac{ig_{20}}{\omega _{+}\tilde{\tau }}\dot{q}(0) -\frac{\overline{g}_{02}}{3i\omega _{+}\tilde{\tau }} \dot{\overline{q}}(0)\nonumber \\&\quad +\,\int _{-1}^{0}d\eta (\theta )e^{2i\omega _{+}\tilde{\tau }\theta }E_{1}\nonumber \\&= -g_{20}q(0)+\frac{\overline{g}_{02}}{3}\overline{q}(0)\nonumber \\&\quad +\,\int _{-1}^{0}d\eta (\theta )e^{2i\omega _{+}\tilde{\tau } \theta }E_{1}, \end{aligned}$$
(5.31)

and

$$\begin{aligned} 2i\omega _+\tilde{\tau }W_{20}(0)&= -2g_{20}q(0) -\frac{2\overline{g}_{02}}{3}\overline{q}(0)\nonumber \\&\quad +\,2i\omega _ +\tilde{\tau }E_1. \end{aligned}$$
(5.32)

Therefore, (5.29) becomes

$$\begin{aligned} G_{20}(0)&= -g_{20}q(0)-\overline{g}_{02}\overline{q}(0)\nonumber \\&\quad +\,\left( 2i\omega _+\tilde{\tau }I -\int _{-1}^{0}d\eta (\theta )e^{2i\omega _{+}\tilde{\tau }\theta }\right) E_1. \end{aligned}$$
(5.33)

Similarly, we have

$$\begin{aligned} G_{11}(0)=-g_{11}q(0)-\overline{g}_{11}\overline{q}(0) -\int _{-1}^{0}d\eta (\theta )E_2. \end{aligned}$$
(5.34)

In addition, we get

$$\begin{aligned}&G_{20}(0)=-g_{20}q(0)-\overline{g}_{02}\overline{q}(0)\nonumber \\&\quad +\,2\tilde{\tau }\left( \begin{array}{c} \frac{\overline{\zeta }^{*}}{2}f^{(1)}_{20} +\frac{\overline{\zeta }^{*}}{2}f^{(1)}_{02}\zeta ^2 +\overline{\zeta }^{*}f^{(1)}_{11}\zeta \\ \frac{1}{2}f^{(2)}_{20} +\frac{1}{2}f^{(2)}_{02}\zeta ^2 +f^{(2)}_{11}\zeta \end{array}\right) ,\end{aligned}$$
(5.35)
$$\begin{aligned}&G_{11}(0)=-g_{11}q(0)-\overline{g}_{11}\overline{q}(0)\nonumber \\&\quad +\,2\tilde{\tau }\left( \begin{array}{c} \frac{\overline{\zeta }^{*}}{2}f^{(1)}_{20}2 +\frac{\overline{\zeta }^{*}}{2}f^{(1)}_{02}2\zeta \overline{\zeta } +\overline{\zeta }^{*}f^{(1)}_{11}(\zeta +\overline{\zeta })\\ \frac{1}{2}f^{(2)}_{20}2 +\frac{1}{2}f^{(2)}_{02}2\zeta \overline{\zeta } +f^{(2)}_{11}(\zeta +\overline{\zeta }) \end{array}\right) .\nonumber \\ \end{aligned}$$
(5.36)

Substituting (5.35) and (5.36) into (5.33) and (5.34), respectively, then

$$\begin{aligned}&\left( i\omega _{+}\tilde{\tau }I-\int _{-1}^{0}e^{i\omega _{+} \tilde{\tau }\theta }d\eta (\theta )\right) q(0)=0,\\&\left( -i\omega _{+}\tilde{\tau }I-\int _{-1}^{0} e^{-i\omega _{+}\tilde{\tau }\theta }d\eta (\theta )\right) \overline{q}(0)=0. \end{aligned}$$

We have

$$\begin{aligned}&\left( 2i\omega _{+}\tilde{\tau }I- \int _{-1}^{0}e^{2i\omega _{+}\tilde{\tau }\theta }d \eta (\theta )\right) E_{1}\\&\quad =2\tilde{\tau }\left( \begin{array}{c} \frac{\overline{\zeta }^{*}}{2}f^{(1)}_{20} +\frac{\overline{\zeta }^{*}}{2}f^{(1)}_{02}\zeta ^2 +\overline{\zeta }^{*}f^{(1)}_{11}\zeta \\ \frac{1}{2}f^{(2)}_{20} +\frac{1}{2}f^{(2)}_{02}\zeta ^2 +f^{(2)}_{11}\zeta \end{array}\right) , \end{aligned}$$

namely,

$$\begin{aligned}&\left( \begin{array}{c@{\quad }c}2i\omega _{+}-\alpha _{11}-a_{11}e^{-2i \omega _{+}\tilde{\tau }}&{}-\alpha _{12} \\ -\alpha _{21} &{} 2i\omega _{+}-\alpha _{22} \end{array}\right) E_{1}\nonumber \\&\quad =2\left( \begin{array}{c} \frac{\overline{\zeta }^{*}}{2}f^{(1)}_{20} +\frac{\overline{\zeta }^{*}}{2}f^{(1)}_{02}\zeta ^2 +\overline{\zeta }^{*}f^{(1)}_{11}\zeta \\ \frac{1}{2}f^{(2)}_{20} +\frac{1}{2}f^{(2)}_{02}\zeta ^2 +f^{(2)}_{11}\zeta \end{array}\right) . \end{aligned}$$

Thus, we get

$$\begin{aligned}&E^{(1)}_{1}=\frac{2}{B_1}\left| \begin{array}{c@{\quad }c} \frac{\overline{\zeta }^{*}}{2}f^{(1)}_{20} +\frac{\overline{\zeta }^{*}}{2}f^{(1)}_{02}\zeta ^2 +\overline{\zeta }^{*}f^{(1)}_{11}\zeta &{}-\alpha _{12} \\ \frac{1}{2}f^{(2)}_{20} +\frac{1}{2}f^{(2)}_{02}\zeta ^2 +f^{(2)}_{11}\zeta &{} 2i\omega _{+}-\alpha _{22}\end{array}\right| ,\\&E^{(2)}_{1}=\frac{2}{B_1}\left| \begin{array}{c@{\quad }c} 2i\omega _{+}-\alpha _{11}-a_{11}e^{-2i\omega _{+}\tilde{\tau }}&{} \frac{\overline{\zeta }^{*}}{2}f^{(1)}_{20} +\frac{\overline{\zeta }^{*}}{2}f^{(1)}_{02}\zeta ^2 +\overline{\zeta }^{*}f^{(1)}_{11}\zeta \\ -\alpha _{21} &{} \frac{1}{2}f^{(2)}_{20} +\frac{1}{2}f^{(2)}_{02}\zeta ^2 +f^{(2)}_{11}\zeta \end{array}\right| , \end{aligned}$$

where

$$\begin{aligned} B_1=\left| \begin{array}{c@{\quad }c}2i\omega _{+}-\alpha _{11} -a_{11}e^{-2i\omega _{+}\tilde{\tau }} &{}-\alpha _{12} \\ -\alpha _{21} &{} 2i\omega _{+}-\alpha _{22} \end{array}\right| . \end{aligned}$$

Similarly,

$$\begin{aligned}&E^{(1)}_{2}=\frac{2}{B_2}\left| \begin{array}{c@{\quad }c} \frac{\overline{\zeta }^{*}}{2}f^{(1)}_{20}2 +\frac{\overline{\zeta }^{*}}{2}f^{(1)}_{02}2\zeta \overline{\zeta } +\overline{\zeta }^{*}f^{(1)}_{11}(\zeta +\overline{\zeta })&{}-\alpha _{12} \\ \frac{1}{2}f^{(2)}_{20}2 +\frac{1}{2}f^{(2)}_{02}2\zeta \overline{\zeta } +f^{(2)}_{11}(\zeta +\overline{\zeta })&{} -\alpha _{22}\end{array}\right| ,\\&E^{(2)}_{2}=\frac{2}{B_2}\left| \begin{array}{c@{\quad }c} -\alpha _{11}-a_{11}e^{-2i\omega _{+}\tilde{\tau }}&{} \frac{\overline{\zeta }^{*}}{2}f^{(1)}_{20}2 +\frac{\overline{\zeta }^{*}}{2}f^{(1)}_{02}2\zeta \overline{\zeta } +\overline{\zeta }^{*}f^{(1)}_{11}(\zeta +\overline{\zeta }) \\ -\alpha _{21}e^{-2i\omega _{+}\tilde{\tau }} &{} \frac{1}{2}f^{(2)}_{20}2 +\frac{1}{2}f^{(2)}_{02}2\zeta \overline{\zeta } +f^{(2)}_{11}(\zeta +\overline{\zeta })\end{array}\right| , \end{aligned}$$

where

$$\begin{aligned} B_2=\left| \begin{array}{c@{\quad }c}-\alpha _{11}-a_{11}e^{-2i \omega _{+}\tilde{\tau }}&{}-\alpha _{12} \\ -\alpha _{21} &{}-\alpha _{22} \end{array}\right| . \end{aligned}$$

Then, \(g_{21}\) can be determined by the parameters. Thus, we can compute the following values:

$$\begin{aligned}&C_{1}(0)=\frac{i}{2\omega _{+}\tilde{\tau }} \left( g_{20}g_{11}-2|g_{11}|^{2}-\frac{|g_{02}|^{2}}{3}\right) +\frac{g_{21}}{2},\\&\quad \mu _{2}=-\frac{Re\{C_{1}(0)\}}{Re\{\lambda '(\tilde{\tau })\}} \text { and } \beta _{2}=2Re\{C_{1}(0)\}. \end{aligned}$$

Theorem 5.1

  1. (i)

    \(\mu _{2}\) determines the directions of Hopf bifurcation. If \(\mu _{2}>0\) \((<0)\), then the Hopf bifurcation is supercritical (subcritical);

  2. (ii)

    \(\beta _{2}\) determines the stability of bifurcated periodic solutions. If \(\beta _{2}<0\) \((>0),\) the bifurcated periodic solutions are stable (unstable).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JF., Huang, F. Nonlinear dynamics of a delayed Leslie predator–prey model. Nonlinear Dyn 77, 1577–1588 (2014). https://doi.org/10.1007/s11071-014-1400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1400-7

Keywords

Navigation