Skip to main content

Advertisement

Log in

Heteroclinic motion and energy transfer in coupled oscillator with nonlinear magnetic coupling

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we consider two coupled oscillators exhibiting both transient chaos and energy transfer from mechanical to electrical oscillators. Melnikov method is applied to these oscillators with linear damping and strongly nonlinear coupling terms in order to study the possibility of existence of chaos and transversal heteroclinic orbits and their control in a dynamical system. The energy transfer is studied using a qualitative measure of the system which can be obtained by computing the energy dissipated in it. At last, the numerical simulation is carried out for this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Okada, Y., Matsuda, K., Hashitani, H.: Self-sensing active vibration control using the moving-coil-type actuator. J. Vib. Acoust. 117, 411–415 (1995)

    Article  Google Scholar 

  2. Ge, Z.-M., Lin, T.-N.: Chaos, chaos control and synchronization of electromechanical gyrostat system. J. Sound Vib. 259, 585–603 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Yamapi, R., Bowong, S.: Dynamics and chaos control of the self-sustained electromechanical device with and without discontinuity. Commun. Nonlinear Sci. Numer. Simul. 11, 355–375 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Siewe, S.M., Moukam Kakmeni, F.M., Tchawoua, C., Woafo, P.: Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory. Nonlinear Dyn. 62, 379–389 (2010)

    Article  MATH  Google Scholar 

  5. Tomlinson, G.R.: Force distortion in resonance testing of structures with electrodynamic vibration exciters. J. Sound Vib. 63, 337–350 (1979)

    Article  Google Scholar 

  6. Triplett, A., Quinn, D.D.: The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. J. Intell. Mat. Syst. Struct. 20, 1959–1967 (2009)

    Article  Google Scholar 

  7. Crawley, E.F., Anderson, E.H.: Detailed models for the piezoceramic actuation of beams. J. Intell. Mat. Syst. Struct. 1, 4–25 (1990)

    Article  Google Scholar 

  8. Crawley, E.F., Lazarus, K.B.: Induced strain actuation of isotropic and anisotropic plates. AIAA J. 29, 944–951 (1991)

    Article  Google Scholar 

  9. Tiersten, H.F.: Electroelastic equations for electroded thin plates subject to large driving voltages. J. Appl. Phys. 74, 3389–3393 (1993)

    Article  Google Scholar 

  10. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations. Dynamical System and Bifurcations of Vector Fields. Springer, New York (1983)

    MATH  Google Scholar 

  11. Bartuccelli, M., Christiansen, P.L., Pedersen, N.F., Soersen, M.P.: Prediction of chaos in Josephson junction by the Melnikov function. Phys. Revue B 33, 4686–4691 (1986)

    Article  Google Scholar 

  12. Bartuccelli, M., Christiansen, P.L., Pedersen, N.F., Salerno, M.: Horseshoe chaos in the space-independent double sine-Gordon. Wave Motion 8, 581–594 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Holmes, P.J.: A nonlinear oscillator with a strange attractor. Philos. Trans. R. Soc. A 292, 418–448 (1979)

    Article  Google Scholar 

  14. Holmes, P.J., Marsden, J.E.: Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom. Commun. Math. Phys. 82, 523–544 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Genesiot, R., Tesi, A.: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28(3), 531–548 (1992)

    Article  Google Scholar 

  16. Grotta-Ragazzo, C.: Irregular dynamics and homoclinic orbits to Hamiltonian saddle centers. Commun. Pure Appl. Math. 50, 105–147 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhang, J.-H., Zhang, W.: An extended high-dimensional Melnikov analysis for global and chaotic dynamics of a non-autonomous rectangular buckled thin plate. Sci. China Phys. Mech. Astron. 55(9), 1679–1690 (2012)

    Article  Google Scholar 

  18. Sarka, B.C., Dandapathak, M.J., Sarkar, S., Banerjee, T.: Studies on the dynamics of two bilaterally coupled periodic gunn oscillators using Melnikov technique. Prog. Electromagn. Res. M 28, 213–228 (2013)

    Article  Google Scholar 

  19. Yagasaki, K.: The method of Melnikov for perturbations of multi-degree-of-freedom Hamiltonian systems. Nonlinearity 12(4), 799–822 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Smith, P., Yorke, J.M.E.: A dual perturbation series analysis of homoclinic bifurcation for autonomous systems. J. Appl. Math. Mech. 72(7), 269–275 (1992)

    MATH  MathSciNet  Google Scholar 

  21. Smith, P.: The multiple scales method, homoclinic bifurcation and Melnikov’s method for autonomous systems. Int. J. Bifurc. Chaos 8, 2099–2105 (1998)

    Article  MATH  Google Scholar 

  22. Siewe, S.M., Moukam Kakmeni, F.M., Tchawoua, C.: Resonance oscillations and homoclinic bifurcation in a \(\Phi ^{6}\)-Van der Pol oscillators. Solitons. Fractals 21, 841–853 (2004)

    Article  MATH  Google Scholar 

  23. Siewe, S.M., Moukam Kakmeni, F.M., Tchawoua, C., Woafo, P.: Bifurcations and chaos in periodically and externally driven \(\Phi ^{6}\)-Van der Pol oscillators. Physica A 357, 383–396 (2005)

    Article  Google Scholar 

  24. Bruhn, B., Koch, B.P.: Homoclinic and heteroclinic bifurcations in rf SQUIDs. Zeitschrift fur Naturforschung 43, 930–938 (1988)

    MathSciNet  Google Scholar 

  25. Grebogi, C., Ott, E., Yorke, J.A.: Crises. sudden changes in chaotic attractors and transient chaos. Phys. D 7, 181–200 (1983)

    Article  MathSciNet  Google Scholar 

  26. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics Analytical, Computational, and Experimental Method. Wiley, New York (1995)

    Book  Google Scholar 

  27. Lenci, S., Rega, G.: Load carrying capacity of systems within a global safety perspective. part 2. Attractor/basin integrity under dynamic excitations. Int. J. Non-linear Mech. 46(9), 1240–1251 (2011).

    Google Scholar 

  28. Stephen, N.G.: On energy harvesting from ambient vibration. J. Sound Vib. 293(1), 409–425 (2006)

    Article  MathSciNet  Google Scholar 

  29. Spreemann, D., Manoli, Y.: Electromagnetic Vibration Energy Harvesting Devices, Architectures, Design. Modeling and Optimization. Springer Science and Business Media B.V, New York (2012)

    Book  Google Scholar 

  30. Ramlan, R.: Effects of non-linear stiffness on performance of an energy harvesting device. University of Southampton, Southampton, PhD book (2009)

    Google Scholar 

  31. Mc Innes, C.R., Gorman, D.G., Cartmell, M.P.: Enhanced vibrational energy harvesting using non-linear stochastic resonance. J. Sound Vib. 318(4–5), 655–662 (2008)

    Google Scholar 

  32. Spreemann, D., Hoffmann, D., Hymon, E., Folkmer, B., Manoli, Y.: Über die verwendung nichtlinearer federn für miniaturisierte vibrationswandler. In: Proceedings of Mikrosystemtechnik Kongress, Dresden, 15–17 Oct, (2007).

  33. Cepnika, C., Radler, O., Rosenbaumb, S., Ströhl, T., Wallrabe, U.: Effective optimization of electromagnetic energy harvesters through direct computation of the electromagnetic coupling. Sens. Actuators A 167, 416–421 (2011)

    Article  Google Scholar 

  34. Mizuno, M., Chetwynd, D.G.: Investigation of a resonance microgenerator. J. Micromech. Microeng. 13, 209–216 (2003)

    Article  Google Scholar 

  35. Sari, I., Balkan, T., Kulah, H.: An electromagnetic micro energy harvester based on an array of parylene cantilevers. J. Micromech. Microeng. 19, 105023–105035 (2009)

    Article  Google Scholar 

  36. Wang, P., Tanaka, K., Sugiyama, S., Dai, X., Zhao, X., Liu, J.: A micro electromagnetic low level vibration energy harvester based on mems technology. Microsyst. Technol. 15, 941–951 (2009)

    Article  Google Scholar 

  37. Nono Dueyou Buckjohn, C., Siewe, S.M., Mokem Fokou, I.S., Tchawoua, C., Kofane, T.C.: Investigating bifurcations and chaos in magnetopiezoelectric vibrating energy harvesters using Melnikov theory. Phys. Scripta 88(1–9), 015006 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

M. Siewe Siewe is indebted to the Abdus Salam International Centre for Theoretical Physics for its financial support to carry out a research work as a research fellow and also indebted to the Mathematics section of ICTP for hosting him when undertaking this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Siewe Siewe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siewe, M.S., Buckjohn, C.N.D. Heteroclinic motion and energy transfer in coupled oscillator with nonlinear magnetic coupling. Nonlinear Dyn 77, 297–309 (2014). https://doi.org/10.1007/s11071-014-1294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1294-4

Keywords

Navigation