Skip to main content
Log in

An extended high-dimensional Melnikov analysis for global and chaotic dynamics of a non-autonomous rectangular buckled thin plate

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

By using an extended Melnikov method on multi-degree-of-freedom Hamiltonian systems with perturbations, the global bifurcations and chaotic dynamics are investigated for a parametrically excited, simply supported rectangular buckled thin plate. The formulas of the rectangular buckled thin plate are derived by using the von Karman type equation. The two cases of the buckling for the rectangular thin plate are considered. With the aid of Galerkin’s approach, a two-degree-of-freedom non-autonomous nonlinear system is obtained for the non-autonomous rectangular buckled thin plate. The high-dimensional Melnikov method developed by Yagasaki is directly employed to the non-autonomous ordinary differential equation of motion to analyze the global bifurcations and chaotic dynamics of the rectangular buckled thin plate. Numerical method is used to find the chaotic responses of the non-autonomous rectangular buckled thin plate. The results obtained here indicate that the chaotic motions can occur in the parametrically excited, simply supported rectangular buckled thin plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang X L, Sethna P R. Local and global bifurcations in parametrically excited vibrations nearly square plates. Int J Non-Linear Mech, 1990, 26: 199–220

    Article  MathSciNet  Google Scholar 

  2. Feng Z C, Sethna P R. Global bifurcations in the motion of parametrically excited thin plate. Nonlinear Dyn, 1993, 4: 389–408

    Article  Google Scholar 

  3. Kovacic G, Wiggins S. Orbits homoclinic to resonance with an application to chaos in a model of the forced and damped sine-Gordon equation. Physica D, 1992, 57: 185–225

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Chang S I, Bajaj A K, Krousgrill C M. Non-linear vibrations and chaos in harmonically excited rectangular plates with one-to-one internal resonance. Nonlinear Dyn, 1993, 4: 433–460

    Article  Google Scholar 

  5. Sassi S, Ostiguy G L. Effects of initial geometric imperfections on the interaction between forced and parametric vibrations. J Sound Vib, 1994, 178: 41–54

    Article  ADS  Google Scholar 

  6. Anlas G, Elbeyli O. Nonlinear vibrations of a simply supported rectangular metallic plate subjected to transverse harmonic excitation in presence of a one-to-one internal resonance. Nonlinear Dyn, 1998, 30: 1–28

    Article  Google Scholar 

  7. Malhotra N, Namachchivaya N S. Chaotic dynamics of shallow arch structures under 1:1 internal resonance. ASCE J Eng Mech, 1998, 123: 205–225

    Google Scholar 

  8. Abe A, Kobayashi Y, Yamada G. Two-mode response of simply supported, rectangular laminated plates. Int J Non-Linear Mech, 1998, 33: 675–690

    Article  MATH  Google Scholar 

  9. Zhang W, Liu Z M, Yu P. Global dynamics of a parametrically externally excited thin plate. Nonlinear Dyn, 2001, 24: 245–268

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang W. Global and chaotic dynamics for a parametrically excited thin plate. J Sound Vib, 2001, 239: 1013–1036

    Article  ADS  Google Scholar 

  11. Yeh Y L, Chen C K, Lai H Y. Chaotic and bifurcation dynamics for a simply supported rectangular thin plate of thermo-mechanical coupling in large deflection. Chaos Solitons Fractals, 2002, 13: 1493–1506

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Awrejcewicz J, Krysko V A, Narkaitis G G. Bifurcations of a thin plate-strip excited transversally and axially. Nonlinear Dyn, 2003, 32: 187–209

    Article  MATH  Google Scholar 

  13. He X L. Non-linear dynamic response of a thin laminate subject to non-uniform thermal field. Int J Non-Linear Mech, 2006, 41: 43–56

    Article  MATH  Google Scholar 

  14. Hao Y X, Chen L H, Zhang W, et al. Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate. J Sound Vib, 2008, 312, 862–892

    Article  ADS  Google Scholar 

  15. Zhang W, Yao Z G, Yao M H. Periodic and chaotic dynamics of composite laminated piezoelectric rectangular plate with one-to-two internal resonance. Sci China Ser E-Tech Sci, 2009, 52: 731–742

    Article  MathSciNet  MATH  Google Scholar 

  16. Wiggins S. Global Bifurcation and Chaos-Analytical Methods. New York: Springer-Verlag, 1988

    Book  Google Scholar 

  17. Yagasaki K. The method of Melnikov for perturbations of multi-degree-of-freedom Hamiltonian systems. Nonlinearity, 1999, 12: 799–822

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Holmes P, Marsden J E. A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam. Arch Rational Mech Anal, 1981, 76: 135–165

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Gruendler J. The existence of homoclinic orbits and the method of Melnikov for systems in Rn. SIAM J Math Anal, 1985, 16: 907–931

    Article  MathSciNet  MATH  Google Scholar 

  20. Yagasaki K. Periodic and homoclinic motions in forced, coupled oscillators. Nonlinear Dyn, 1999, 20: 319–359

    Article  MathSciNet  MATH  Google Scholar 

  21. Yagasaki K. Horseshoes in two-degree-of-freedom Hamiltonian systems with saddle-centers. Arch Rational Mech Anal, 2000, 154: 275–296

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Yagasaki K. Homoclinic and heteroclinic orbits to invariant tori in multi-degree-of -freedom Hamiltonian systems with saddle centers, Nonlinearity, 2005, 18: 1331–1350

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Feng Z C, Liew K M. Global bifurcations in parametrically excited systems with zero-to-one internal resonance. Nonlinear Dyn, 2000, 21: 249–263

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang W, Li J. Global analysis for a nonlinear vibration absorber with fast and slow modes. Int J Bifurcation Chaos, 2001, 11: 2179–2194

    Article  Google Scholar 

  25. Zhang W, Tang Y. Global dynamics of the cable under combined parametrical and external excitations. Int J Non-Linear Mech, 2002, 37: 505–526

    Article  MATH  Google Scholar 

  26. Malhotra N, Namachchivaya N S, McDonald R J. Multipulse orbits in the motion of flexible spinning discs. J Nonlinear Sci, 2002, 12: 1–26

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Zhang W, Wang F X, Yao M H. Global bifurcations and chaotic dynamics in nonlinear non-planar oscillations of a parametrically excited cantilever beam. Nonlinear Dyn, 2005, 40: 251–279

    Article  MathSciNet  MATH  Google Scholar 

  28. Yao M H, Zhang W. Multi-pulse Shilnikov orbits and chaotic dynamics in nonlinear nonplanar motion of a cantilever beam. Int J Bifurcation Chaos, 2005, 15: 3923–3952

    Article  MathSciNet  MATH  Google Scholar 

  29. Yao M H, Zhang W. Shilnikov-type multipulse orbits and chaotic dynamics of a parametrically and externally excited rectangular thin plate. Int J Bifurcation Chaos, 2007, 17: 851–875

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang W, Yao M H, Zhang J H. Using the extended Melnikov method to study the multi-pulse global bifurcations and chaos of a cantilever beam. J Sound Vib, 2009, 319: 541–569

    Article  ADS  Google Scholar 

  31. Chia C Y. Non-Linear Analysis of Plate. McMraw-Hill Inc., 1980

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhang, W. An extended high-dimensional Melnikov analysis for global and chaotic dynamics of a non-autonomous rectangular buckled thin plate. Sci. China Phys. Mech. Astron. 55, 1679–1690 (2012). https://doi.org/10.1007/s11433-012-4825-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4825-3

Keywords

Navigation