Skip to main content
Log in

Integrability with symbolic computation on the Bogoyavlensky–Konoplechenko model: Bell-polynomial manipulation, bilinear representation, and Wronskian solution

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

With symbolic computation, this paper investigates some integrable properties of a two-dimensional generalization of the Korteweg-de Vries equation, i.e., the Bogoyavlensky–Konoplechenko model, which can govern the interaction of a Riemann wave propagating along the \(y\)-axis and a long wave propagating along the \(x\)-axis. Within the framework of Bell-polynomial manipulations, Bell-polynomial expressions are firstly given, which then are cast into bilinear forms. The \(N\)-soliton solutions in the form of an \(N\)th-order polynomial in the \(N\) exponentials and in terms of the Wronskian determinant are, respectively, constructed with the Hirota bilinear method and Wronskian technique. Bilinear Bäcklund transformation is also derived with the achievement of a family of explicit solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dai, C.Q., Zhu, H.P.: Superposed Kuznetsov-Ma solitons in a two-dimensional graded-index grating waveguide. J. Opt. Soc. Am. B. 30, 3291 (2013)

    Google Scholar 

  2. Lü, X., Tian, B., Zhang, H.Q., Xu, T., Li, H.: Generalized \((2+1)\)-dimensional Gardner model: bilinear equations, Bäklund transformation, Lax representation and interaction mechanisms. Nonlinear Dyn. 67, 2279 (2012)

    Article  MATH  Google Scholar 

  3. Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A. 89, 013834 (2014)

    Google Scholar 

  4. Zhang, Y., Song, Y., Cheng, L., Ge, J.Y., Wei, W.W.: Exact solutions and Painlevé analysis of a new \((2+1)\)-dimensional generalized KdV equation. Nonlinear Dyn. 68, 445 (2012)

    Google Scholar 

  5. Ma, W.X., Fan, E.G.: Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl. 61, 950 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ma, W.X., Wu, H.Y., He, J.S.: Partial differential equations possessing Frobenius integrable decompositions. Phys. Lett. A 364, 29 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lü, X.: Soliton behavior for a generalized mixed nonlinear Schröinger model with N-fold Darboux transformation. Chaos 23, 033137 (2013)

    Article  Google Scholar 

  8. Lü, X.: New bilinear Bäcklund transformation with multisoliton solutions for the \((2+1)\)-dimensional Sawada–Kotera model. Nonlinear Dyn. (2013). doi:10.1007/s11071-013-1118-y

  9. Lü, X., Peng, M.: Painlevé-integrability and explicit solutions of the general two-coupled nonlinear Schrödinger system in the optical fiber communications. Nonlinear Dyn. 73, 405 (2013)

    Article  MATH  Google Scholar 

  10. Lü, X., Peng, M.: Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells–Fokas model. Chaos 23, 013122 (2013)

    Article  Google Scholar 

  11. Lü, X., Peng, M.: Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics. Commun. Nonlinear Sci. Numer. Simul. 18, 2304 (2013)

    Article  MathSciNet  Google Scholar 

  12. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary wave. Philos. Mag. 39, 422 (1895)

    Article  MATH  Google Scholar 

  13. Osborne, A.R.: The inverse scattering transform: tools for the nonlinear fourier analysis and filtering of ocean surface waves. Chaos Solitons Fract. 5, 2623 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ludu, A., Draayer, J.P.: Nonlinear modes of liquid drops as solitary waves. Phys. Rev. Lett. 80, 2125 (1998)

    Article  Google Scholar 

  15. Lü, X., Tian, B., Sun, K., Wang, P.: Bell-polynomial manipulations on the Bäcklund transformations and Lax pairs for some soliton equations with one Tau-function. J. Math. Phys. 51, 113506 (2010)

    Article  MathSciNet  Google Scholar 

  16. Lü, X., Li, L.L., Yao, Z.Z., Geng, T., Cai, K.J., Zhang, C., Tian, B.: Symbolic computation study of a generalized variable-coefficient two-dimensional Korteweg-de Vries model with various external-force terms from shallow water waves, plasma physics, and fluid dynamics. Z. Naturf. A 64, 222 (2009)

    Google Scholar 

  17. Konopelchenko, B.G.: Solitons in Multidimensions. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

  18. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  19. Cheng, Y., Li, Y.S.: Constraints of the \(2+1\) dimensional integrable soliton systems. J. Phys. A 25, 419 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Konopelchenko, B.G., Dubrovsky, V.G.: Some new integrable nonlinear evolution equations in \(2+1\) dimensions. Phys. Lett. A 102, 45 (1984)

    Article  MathSciNet  Google Scholar 

  21. Veerakumar, V., Daniel, M.: Modified Kadomtsev–Petviashvili (MKP) equation and electromagnetic soliton. Math. Comput. Simul. 62, 163 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Geng, X.G., Li, X.M.: Explicit solutions for some \((2+1)\)-dimensional nonlinear evolution equations. J. Phys. A 34, 9653 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chen, J.B., Geng, X.G.: Some quasi-periodic solutions to the Kadometsev–Petviashvili and modified Kadometsev–Petviashvili equations. Eur. Phys. J. B 50, 445 (2006)

    Article  MathSciNet  Google Scholar 

  24. Geng, X.G., Wu, Y.T., Cao, C.W.: Quasi-periodic solutions of the modified Kadomtsev–Petviashvili equation. J. Phys. A 32, 3733 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Prabhakar, M.V., Bhate, H.: Exact Solutions of the Bogoyavlensky–Konoplechenko equation. Lett. Math. Phys. 64, 1 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hu, H.C.: New positon, negaton and complexiton solutions for the Bogoyavlensky–Konoplechenko equation. Phys. Lett. A 373, 1750 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Xin, X.P., Liu, X.Q., Zhang, L.L.: Explicit solutions of the Bogoyavlensky–Konoplechenko equation. Appl. Math. Comput. 215, 3669 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Radha, R., Lakshmanan, M.: Dromion like structures in the \((2+1)\)-dimensional breaking soliton equation. Phys. Lett. A 197, 7 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Qin, B., Tian, B., Liu, L.C., Meng, X.H., Liu, W.J.: Bäcklund transformation and multisoliton solutions in terms of Wronskian determinant for \((2+1)\)-dimensional breaking soliton equations with symbolic computation. Commun. Theor. Phys. 54, 1059 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Calogero, F.: A method to generate solvable nonlinear evolution equations. Lett. Nuovo Cim. 14, 443 (1975)

    Article  MathSciNet  Google Scholar 

  31. Bogoyavlenskii, O.I.: Overturning solitons in new two-dimensional integrable equations. Izv. Akad. Nauk SSSR Ser. Mat. 53, 243 (1989)

    MathSciNet  Google Scholar 

  32. Bell, E.T.: Exponential polynomials. Ann. Math. 35, 258 (1934)

    Article  Google Scholar 

  33. Lambert, F., Loris, I., Springael, J., Willox, R.: On a direct bilinearization method: Kaup’s higher-order water wave equation as a modified nonlocal Boussinesq equation. J. Phys. A 27, 5325 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  34. Gilson, C., Lambert, F., Nimmo, J., Willox, R.: On the combinatorics of the Hirota D-operators. Proc. R. Soc. Lond. A 452, 223 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lambert, F., Springael, J.: Soliton equations and simple combinatorics. Acta Appl. Math. 102, 147 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lambert, F., Springael, J.: Construction of Bäcklund transformations with binary Bell polynomials. J. Phys. Soc. Jpn. 66, 2211 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  37. Lambert, F., Springael, J.: On a direct procedure for the disclosure of Lax pairs and Bäcklund transformations. Chaos Solitons Fract. 12, 2821 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  38. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  39. Rogers, C., Shadwick, W.F.: Bäcklund Transformations and their Applications. Academic Press, New York (1982)

    MATH  Google Scholar 

  40. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805 (1973)

    Google Scholar 

  41. Lü, X., Zhu, H.W., Meng, X.H., Yang, Z.C., Tian, B.: Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications. J. Math. Anal. Appl. 336, 1305 (2007)

    Google Scholar 

  42. Lü, X., Geng, T., Zhang, C., Zhu, H.W., Meng, X.H., Tian, B.: Multi-soliton solutions and their interactions for the \((2+1)\)-dimensional Sawada–Kotera model with truncated Painlevé expansion, Hirota bilinear method and symbolic computation. Int. J. Mod. Phys. B 23, 5003 (2009)

    Article  MATH  Google Scholar 

  43. Freeman, N.C., Nimmo, J.J.C.: Soliton solutions of the Korteweg-de Vries and Kadomtsev–Petviashvili equations: the wronskian technique. Phys. Lett. A 95, 1 (1983)

    Google Scholar 

  44. Nimmo, J.J.C., Freeman, N.C.: A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a wronskian. Phys. Lett. A 95, 4 (1983)

    Google Scholar 

  45. Freeman, N.C.: Soliton solutions of non-linear evolution equations. IMA J. Appl. Math. 32, 125 (1984)

    Google Scholar 

  46. Lü, X., Zhu, H.W., Yao, Z.Z., Meng, X.H., Zhang, C., Yang, Z.C., Tian, B.: Multisoliton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schrödinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications. Ann. Phys. (NY) 323, 1947 (2008)

Download references

Acknowledgments

We would like to express our sincere thanks to the referees and the editor Edita Alfred for their valuable suggestions. This work is supported by the National Natural Science Foundation of China under Grant No. 61308018, by China Postdoctoral Science Foundation under Grant No. 2012M520154, by the Fundamental Research Funds for the Central Universities of China (2013JBM088), and partially by the Project of State Key Laboratory of Rail Traffic Control and Safety (No. RCS2012ZT004), Beijing Jiao Tong University. JL is supported by National Natural Science Foundation of China under Grant No. 11101421, and the Special Foundation for Young Scientists of Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences (No. Y1S01500CX)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Lü.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, X., Li, J. Integrability with symbolic computation on the Bogoyavlensky–Konoplechenko model: Bell-polynomial manipulation, bilinear representation, and Wronskian solution. Nonlinear Dyn 77, 135–143 (2014). https://doi.org/10.1007/s11071-014-1279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1279-3

Keywords

Navigation