Skip to main content
Log in

Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new computation method is proposed to study the coupled dynamics of a partially liquid-filled flexible multibody system, where the liquid is modeled by using the Smoothed Particle Hydrodynamics (SPH) method and the flexible bodies are described by using the Absolute Nodal Coordinate Formulation (ANCF). Extra virtual particles are introduced and embedded in the liquid neighboring the rigid or flexible boundaries in order to prevent field particles from penetrating the boundary and force them to follow the deformation of flexible boundary. The interaction forces between the liquid and the flexible multibody system are transmitted by the virtual particles. The domain decomposition is used to improve the efficiency of interaction detection in SPH computation. A predictor-corrector scheme is used to solve the governing equations of liquid discretized by SPH particles. The generalized-alpha method based on sparse matrix storage skill is used to solve a huge set of dynamic equations of the multibody system. The OpenMP+OpenACC based parallel computation skills are embedded in the iteration processes to speed up the computation efficiency. Finally, three numerical examples are given to validate the proposed computation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Veldman, A.E.P., Gerrits, J., Luppes, R., Helder, J.A., Vreeburg, J.P.B.: The numerical simulation of liquid sloshing on board spacecraft. J. Comput. Phys. 224, 82–99 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Yue, B.Z.: Heteroclinic bifurcation in completely liquid-filled spacecraft with flexible appendage. Nonlinear Dyn. 51, 317–327 (2008)

    MATH  Google Scholar 

  3. Rumold, W.: Modeling and simulation of vehicles carrying liquid cargo. Multibody Syst. Dyn. 5, 351–374 (2001)

    Article  MATH  Google Scholar 

  4. Fleissner, F., Lehnart, A., Eberhard, P.: Dynamic simulation of sloshing fluid and granular cargo in transport vehicles. Veh. Syst. Dyn. 48(1), 3–15 (2010)

    Article  Google Scholar 

  5. Ibrahim, R.A.: Liquid Sloshing Dynamics: Theory and Applications. Cambridge University Press, New York (2005)

    Book  Google Scholar 

  6. Ranganathan, R., Rakheja, S., Sankar, S.: Steady turning stability of partially filled tank vehicles with arbitrary tank geometry. J. Dyn. Syst. Meas. Control 111, 481–489 (1989)

    Article  MATH  Google Scholar 

  7. Nichkawde, C., Harish, P.M., Ananthkrishnan, N.: Stability analysis of a multibody system model for coupled slosh vehicle dynamics. J. Sound Vib. 275, 1069–1083 (2004)

    Article  Google Scholar 

  8. Yue, B.Z.: Study on the chaotic dynamics in attitude maneuver of liquid-filled flexible spacecraft. AIAA J. 49(10), 2090–2099 (2011)

    Article  Google Scholar 

  9. Ibrahim, R.A., Pilipchuk, V.N., Ikeda, T.: Recent advances in liquid sloshing dynamics. Appl. Mech. Rev. 54, 133–199 (2001)

    Article  Google Scholar 

  10. Ibrahim, R.A.: Overview of mechanics of pipes conveying fluids, part I: fundamental studies. J. Press. Vessel Technol. 32, 1–32 (2010)

    Google Scholar 

  11. Faltinsen, O.M., Timokha, A.N.: Sloshing. Cambridge University Press, New York (2009)

    Google Scholar 

  12. Gerrits, J., Veldman, A.E.P.: Dynamics of liquid-filled spacecraft. J. Eng. Math. 45, 21–38 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mitra, S., Upadhyay, P.P., Sinhamahapatra, K.P.: Slosh dynamics of inviscid fluids in two-dimensional tanks of various geometry using finite element method. Int. J. Numer. Methods Fluids 56, 1625–1651 (2008)

    Article  MATH  Google Scholar 

  14. Lee, C.J.K., Noguchi, H., Koshizuka, S.: Fluid-shell structure interaction analysis by coupled particle and finite element method. Comput. Struct. 85, 688–697 (2007)

    Article  Google Scholar 

  15. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  16. Ortiz, J.L.: Modeling flexible multibody systems-fluid interaction. Ph.D. dissertation, Texas Tech University (1996)

  17. Ortiz, J.L., Barhorst, A.A., Robinett, R.D.: Flexible multibody systems-fluid interaction. Int. J. Numer. Methods Eng. 41, 409–443 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rebouillat, S., Liksonov, D.: Fluid-structure interaction in partially filled liquid containers: a comparative review of numerical approaches. Comput. Fluids 39, 739–746 (2010)

    Article  MATH  Google Scholar 

  19. Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, Singapore (2003)

    Book  Google Scholar 

  20. Liu, G.R.: Mesh Free Methods: Moving Beyond the Finite Element Method, p. 692. CRC Press, Boca Raton (2003)

    Google Scholar 

  21. Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005)

    Article  MathSciNet  Google Scholar 

  22. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1020 (1977)

    Article  Google Scholar 

  23. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

    MATH  Google Scholar 

  24. Springel, V.: Smoothed particle hydrodynamics in astrophysics. Annu. Rev. Astron. Astrophys. 48, 391–430 (2010)

    Article  Google Scholar 

  25. Guida, M., Marulo, F., Meo, M., Grimaldi, A., Olivares, G.: SPH-Lagrangian study of bird impact on leading edge wing. Compos. Struct. 93(3), 1060–1071 (2011)

    Article  Google Scholar 

  26. Price, D.J.: Smoothed particle hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231(3), 759–794 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhang, A.M., Yang, W.S., Yao, X.L.: Numerical simulation of underwater contact explosion. Appl. Ocean Res. 34, 10–20 (2012)

    Article  Google Scholar 

  28. Negrut, D., Tasora, A., Mazhar, H., Heyn, T., Hahn, P.: Leveraging parallel computing in multibody dynamics. Multibody Syst. Dyn. 27, 95–117 (2012)

    Article  MATH  Google Scholar 

  29. Tian, Q., Sun, Y.L., Liu, C., Hu, H.Y., Paulo, F.: Elastohydrodynamic lubricated cylindrical joints for rigid-flexible multibody dynamics. Comput. Struct. 114–115, 106–120 (2013)

    Article  Google Scholar 

  30. Antoci, C., Gallati, M., Sibilla, S.: Numerical simulation of fluid-structure interaction by SPH. Comput. Struct. 85, 879–890 (2007)

    Article  Google Scholar 

  31. Amini, Y., Emdad, H., Farid, M.: A new model to solve fluid-hypo-elastic solid interaction using the smoothed particle hydrodynamics (SPH) method. Eur. J. Mech. B, Fluids 30, 184–194 (2011)

    Article  MATH  Google Scholar 

  32. Schörgenhumer, M., Gruber, P.G., Gerstmayr, J.: Interaction of flexible multibody dynamics with fluids by means of smoothed particle hydrodynamics. In: Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), Vienna (2012)

    Google Scholar 

  33. Schörgenhumer, M., Gruber, P.G., Gerstmayr, J.: Interaction of flexible multibody systems with fluids analyzed by means of smoothed particle hydrodynamics. Multibody Syst. Dyn. 30, 53–76 (2013)

    Article  MathSciNet  Google Scholar 

  34. Shabana, A.A.: An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Technical report No. MBS96-1-UIC, University of Illinois at Chicago (1996)

  35. Yoo, W.S., Dmitrochenko, O., Yu, D.: Review of finite elements using absolute nodal coordinates for large-deformation problems and matching physical experiments. In: ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA (2005), DETC2005-84720

    Google Scholar 

  36. Schiehlen, W.: Research trends in multibody system dynamics. Multibody Syst. Dyn. 18, 3–13 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Shabana, A.A., Yakoub, R.Y.: Three-dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123, 606–613 (2001)

    Article  Google Scholar 

  38. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123, 614–621 (2001)

    Article  Google Scholar 

  39. Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  40. Monaghan, J.J., Lattanzio, J.C.: A refined method for astrophysical problems. Astron. Astrophys. 149, 135–143 (1985)

    MATH  Google Scholar 

  41. Johnson, G.R., Stryk, R.A., Beissel, S.R.: SPH for high velocity impact computations. Comput. Methods Appl. Mech. Eng. 139, 347–373 (1996)

    Article  MATH  Google Scholar 

  42. Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  Google Scholar 

  43. Monaghan, J.J.: Why particle methods work. SIAM J. Sci. Stat. Comput. 3(4), 422–433 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  44. Gesteira, M.G., Rogers, B.D., Dalrymple, R.A., Crespo, A.J.C., Narayanaswamy, M.: User guide for the SPHysics code (2010)

  45. Monaghan, J.J., Kos, A.: Solitary waves on a Cretan beach. J. Waterw. Port Coast. Ocean Eng. 125, 145–154 (1999)

    Article  Google Scholar 

  46. Batchelor, G.K.: Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1974)

    Google Scholar 

  47. Monaghan, J.J.: On the problem of penetration in particle methods. J. Comput. Phys. 82, 1–15 (1989)

    Article  MATH  Google Scholar 

  48. Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  49. Shabana, A.A.: Computational Dynamics, 3rd edn. Wiley, New York (2010)

    Book  MATH  Google Scholar 

  50. Liu, C., Tian, Q., Hu, H.Y.: Dynamics of large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26, 283–305 (2011)

    Article  MATH  Google Scholar 

  51. Liu, C., Tian, Q., Hu, H.Y.: Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Comput. Methods Appl. Mech. Eng. 258, 81–95 (2013)

    Article  MathSciNet  Google Scholar 

  52. Liu, C., Tian, Q., Hu, H.Y., García-Vallejo, D.: Simple formulations of imposing moments and evaluating joint reaction forces for rigid-flexible multibody systems. Nonlinear Dyn. 69, 127–147 (2012)

    Article  MATH  Google Scholar 

  53. Liu, C., Tian, Q., Hu, H.Y.: New spatial curved beam and cylindrical shell elements of gradient deficient absolute nodal coordinate formulation. Nonlinear Dyn. 70, 1903–1918 (2012)

    Article  MathSciNet  Google Scholar 

  54. Hussein, B., Negrut, D., Shabana, A.A.: Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations. Nonlinear Dyn. 54, 283–296 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  55. Tian, Q., Zhang, Y., Chen, L., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate Formulation. J. Comput. Nonlinear Dyn. 4, 021009 (2009)

    Article  Google Scholar 

  56. Shabana, A.A., Hussein, B.: A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: application to multibody systems. J. Sound Vib. 327, 557–563 (2009)

    Article  Google Scholar 

  57. Hussein, B., Shabana, A.A.: Sparse matrix implicit numerical integration of the stiff differential/algebraic equation: implementation. Nonlinear Dyn. 65, 369–382 (2011)

    Article  MathSciNet  Google Scholar 

  58. Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-a method. J. Appl. Mech. 60, 371–375 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  59. Arnold, M., Brüls, O.: Convergence of the generalized-a scheme for constrained mechanical systems. Multibody Syst. Dyn. 18, 185–202 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  60. Hermanns, M.: Parallel programming in Fortran 95 using OpenMP. http://www.openmp.org/presentations/miguel/F95_OpenMPv1_v2.pdf (2002)

  61. Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2010)

    Article  MATH  Google Scholar 

  62. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64, 25–67 (2011)

    Article  MATH  Google Scholar 

  63. Liu, C., Tian, Q., Hu, H.Y.: Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints. Mech. Mach. Theory 52, 106–129 (2012)

    Article  Google Scholar 

  64. Xu, X.Y., Ouyang, J., Yang, B.X., Liu, Z.J.: SPH simulations of three-dimensional non-Newtonian free surface flows. Comput. Methods Appl. Mech. Eng. 256, 101–116 (2013)

    Article  MathSciNet  Google Scholar 

  65. Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)

    Article  MATH  Google Scholar 

  66. Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 448–475 (2003)

    Article  MATH  Google Scholar 

  67. Dilts, G.A.: Moving-least-squares-particle hydrodynamics, I: consistency and stability. Int. J. Numer. Methods Eng. 44, 1115–1155 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  68. Dalrymple, R.A., Rogers, B.D.: Numerical modeling of water waves with the SPH method. Coast. Eng. 53, 141–147 (2006)

    Article  Google Scholar 

  69. Crespo, A.J.C., Gomez-Gesteira, M., Dalrymple, R.A.: Boundary conditions generated by dynamic particles in SPH methods. Comput. Mater. Continua 5, 173–184 (2007)

    MATH  MathSciNet  Google Scholar 

  70. CUDA. http://www.nvidia.com/object/cuda home.html

  71. OpenCL. http://www.khronos.org/opencl

  72. The OpenACC standard. http://www.openacc-standard.org

  73. Shabana, A.A., Mikkola, A.M.: Use of the finite element absolute nodal coordinate formulation in modeling slope discontinuity. J. Mech. Des. 125, 342–350 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundations of China under Grants 11290151 and 11221202. The work was also supported in part by Excellent Young Scholar Research Fund from Beijing Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Tian, Q. & Hu, H. Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method. Nonlinear Dyn 75, 653–671 (2014). https://doi.org/10.1007/s11071-013-1093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1093-3

Keywords

Navigation