Skip to main content
Log in

Synchronization of simplest two-component Hartley’s chaotic circuits: influence of channel

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Firstly, the synchronization problem of the simplest two-component Hartley chaotic systems is considered. A simple and effective controller is used to achieve synchronization between the drive and response systems. The proposed controller is built around a linear and a nonlinear parts with each contributing to the achievement of the synchronization process. The stability of the drive–response systems framework is proved through the Lyapunov stability theory. Secondly, the impact of channel on the signal coming from the drive system to synchronize the response system is taken into consideration. In this second part, the conditions to obtain synchronization between both master and slave systems are investigated. For the purpose of illustration, PSpice simulations are given as complement of the numerical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blasius, B., Huppert, A., Stone, L.: Complex dynamics and phase synchronization in spatially extended ecological system. Nature 399, 354–359 (1999)

    Article  Google Scholar 

  3. Yu, H., Cai, G., Li, Y.: Dynamic analysis and control of a new hyperchaotic finance system. Nonlinear Dyn. 67(3), 2171–2182 (2012). doi:10.1007/s11071-011-0137-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Bowong, S.: Optimal control of the transmission dynamics of tuberculosis. Nonlinear Dyn. 61(4), 729–748 (2010). doi:10.1007/s11071-010-9683-9

    Article  MathSciNet  MATH  Google Scholar 

  5. Feki, M.: An adaptive chaos synchronization scheme applied to secure communication. Chaos Solitons Fractals 18, 141–148 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yang, T., Chua, L.O.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans. Circuits Syst. 44, 976–988 (1997)

    Article  MathSciNet  Google Scholar 

  7. Gao, X., Zhony, S., Gao, F.: Exponential synchronization of neural networks with time-varying delays. Nonlinear Anal. 71, 2003–2011 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yassen, M.T.: Adaptive control and synchronization of modified Chua’s circuit system. Appl. Comput. Math. 135, 113–128 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fotsin, H.B., Bowong, S.: Adaptive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators. Chaos Solitons Fractals 27, 822–835 (2006)

    Article  MATH  Google Scholar 

  10. Astolfi, A., Karagiannis, D., Ortega, R.: Nonlinear and Adaptive Control with Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  11. Zheng, S., Bi, Q., Cai, G.: Adaptive projective synchronization in complex networks with time-varying coupling delay. Phys. Lett. A 373, 1553–1559 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sprott, J.C.: A new class of chaotic circuits. Phys. Lett. A 266, 19–23 (2000)

    Article  Google Scholar 

  13. Sprott, J.C.: Simple chaotic systems and circuits. Am. J. Phys. 68, 758–763 (2000)

    Article  Google Scholar 

  14. Mykolaitis, G., Tamasevicius, A., Bumeliene, S., Namajunas, A., Pyragas, K., Pyragas, V.: Application of ultrafast Schottky diodes to high megahertz chaotic oscillators. In: Proceeding of the 12th International Symposium UFPS, Vilnius, Lithuania (2004)

    Google Scholar 

  15. Elwakil, A.S., Kennedy, M.P.: Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices. IEEE Trans. Circuits Syst. 48, 289–307 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Piper, J.R., Sprott, J.C.: Simple autonomous chaotic circuits. IEEE Trans. Circuits Syst. II, Express Briefs 57(9), 730–734 (2010)

    Article  Google Scholar 

  17. Sprott, J.C.: A new chaotic jerk circuit. IEEE Trans. Circuits Syst. II, Express Briefs 58(4), 240–243 (2011)

    Article  Google Scholar 

  18. Yim, G.S., Ryu, J.W., Park, Y.J., Rim, S., Lee, S.Y., Kye, W.H., Kim, C.M.: Chaotic behaviors of operational amplifiers. Phys. Rev. E 69, 045201 (2004). doi:10.1103/PhysRevE.69.045201

    Article  Google Scholar 

  19. Barboza, R., Chua, L.O.: The four-element Chua’s circuit. Int. J. Bifurc. Chaos Appl. Sci. Eng. 18, 943–955 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurc. Chaos Appl. Sci. Eng. 20(5), 1567–1580 (2010)

    Article  Google Scholar 

  21. Tchitnga, R., Fotsin, H.B., Nana, B., Fotso Louodop, P.H., Woafo, P.: Hartley’s oscillator: the simplest chaotic two-component circuit. Chaos Solitons Fractals 45, 306–313 (2012)

    Article  Google Scholar 

  22. Li, J.X., Wang, Y.C., Ma, F.C.: Experimental demonstration of 1.5 GHz chaos generation using an improved Colpitts oscillator. Nonlinear Dyn. 72, 575–580 (2013)

    Article  MathSciNet  Google Scholar 

  23. Gonzalo, A., Shujun, L.: Cryptographic requirements for chaotic secure communications. 20 November 2003. arXiv:nlin/0311039v1 [nlin.CD]

  24. Kengne, J., Chedjou, J.C., Kenne, G., Kyamakya, K., Kom, G.H.: Analog circuit implementation and synchronization of a system consisting of a van der Pol oscillator linearly coupled to a Duffing oscillator. Nonlinear Dyn. 70, 2163–2173 (2012)

    Article  MathSciNet  Google Scholar 

  25. Lü, L., Yu, M., Li, C., Liu, S., Yan, B., Chang, H.: Projective synchronization of a class of complex network based on high-order sliding mode control. Nonlinear Dyn. 73, 411–416 (2013)

    Article  Google Scholar 

  26. Agrawal, S.K., Das, S.: A modified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters. Nonlinear Dyn. 73, 907–919 (2013)

    Article  MathSciNet  Google Scholar 

  27. Luo, C., Wang, X.: Hybrid robust modified function projective lag synchronization in two different dimensional chaotic systems. Nonlinear Dyn. 73, 245–257 (2013)

    Article  MathSciNet  Google Scholar 

  28. Chang, P.H., Kim, D.: Introduction and synchronization of a five-term chaotic system with an absolute-value term. Nonlinear Dyn. 73, 311–323 (2013)

    Article  MathSciNet  Google Scholar 

  29. Lü, L., Li, Y., Fan, X., Lü, N.: Outer synchronization between uncertain complex networks based on backstepping design. Nonlinear Dyn. 73, 767–773 (2013)

    Article  Google Scholar 

  30. Zhang, L.-f., An, X.-l., Zhang, J.-g.: A new chaos synchronization scheme and its application to secure communications. Nonlinear Dyn. 73, 705–722 (2013)

    Article  MathSciNet  Google Scholar 

  31. Wang, J., Ma, Q., Zeng, L.: Observer-based synchronization in fractional-order leader-follower complex networks. Nonlinear Dyn. 73, 921–929 (2013)

    Article  MathSciNet  Google Scholar 

  32. Andrievsky, B., Fradkov, A.: Information transmission by adaptive synchronization with chaotic carrier and noisy channel. In: Proc. 39th IEEE Conf. Dec. Contr., Sydney (2000)

    Google Scholar 

  33. Shen, C., Shi, Z., Ran, L.: Adaptive synchronization of chaotic Colpitts circuits against parameter mismatches and channel distortions. J. Zhejiang Univ. Sci. A 7, 228–236 (2006)

    Article  MATH  Google Scholar 

  34. Rehan, M., Hong, K.-S.: LMI-based robust adaptive synchronization of FitzHugh–Nagumo neurons with unknown parameters under uncertain external electrical stimulation. Phys. Lett. A 375(15), 1666–1670 (2011)

    Article  MATH  Google Scholar 

  35. Rehan, M., Hong, K.-S.: Robust synchronization of delayed chaotic FitzHugh–Nagumo neurons under external electrical stimulation. Comput. Math. Methods Med. 2012, 230980 (2012). doi:10.1155/2012/230980

    Article  MathSciNet  Google Scholar 

  36. Rehan, M.: Synchronization and anti-synchronization of chaotic oscillators under input saturation. Appl. Math. Model. 37(10–11), 6829–6837 (2013)

    Article  MathSciNet  Google Scholar 

  37. Nguyen, L.H., Hong, K.-S.: Synchronization of coupled chaotic FitzHugh–Nagumo neurons via Lyapunov functions. Math. Comput. Simul. 82, 590–603 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nguyen, L.H., Hong, K.-S.: Adaptive synchronization of two coupled chaotic Hindmarsh–Rose neurons by controlling the membrane potential of a slave neuron. Appl. Math. Model. 37, 2460–2468 (2013)

    Article  MathSciNet  Google Scholar 

  39. Kakmeni, F.M.M., Bowong, S., Senthilkumar, D.V., Kurths, J.: Practical time-delay synchronization of periodically modulated self-excited oscillator with uncertainties. Chaos 20, 043121 (2010)

    Article  Google Scholar 

  40. Zheng, S., Bi, Q., Cai, G.: Adaptive projective synchronization in complex networks with time-varying coupling delay. Phys. Lett. A 373, 1553–1559 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Attia, J.O.: Transistor circuits. In: Attia, J.O. (ed.) Electronics and Circuits Analysis Using MATLAB. CRC Press, Boca Raton (1999)

    Chapter  Google Scholar 

  42. Louodop, P., Fotsin, H., Bowong, S., Soup Tewa Kammogne, A.: Adaptive time-delay synchronization of chaotic systems with uncertainties using a nonlinear feedback coupling. J. Vib. Control (2012). doi:10.1177/1077546312467811 sagepub.co.uk/journalsPermissions.nav.

    MATH  Google Scholar 

  43. Cai, J., Lin, M., Yuan, Z.: Secure communication using practical synchronization between two different chaotic systems with uncertainties. Math. Comput. Appl. 15(2), 166–175 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tchitnga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tchitnga, R., Louodop, P., Fotsin, H. et al. Synchronization of simplest two-component Hartley’s chaotic circuits: influence of channel. Nonlinear Dyn 74, 1065–1075 (2013). https://doi.org/10.1007/s11071-013-1024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1024-3

Keywords

Navigation