Skip to main content
Log in

Nonsmooth analysis of the impact between successive skew bridge-segments

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Skew bridges with in-deck joints belong to the most common types of existing bridges worldwide. Empirical evidence from past earthquakes indicates that such, multi-segment, skew bridges often rotate in the horizontal plane, increasing the chances of deck unseating. The present paper studies the oblique in-deck impact between successive bridge segments, which triggers this peculiar rotation mechanism. The analysis employs a nonsmooth rigid body approach and utilizes set-valued force laws. A key feature of this approach is the linear complementarity problem (LCP) which encapsulates all physically feasible post-impact states. The LCP results in pertinent closed-form solutions which capture each of these states, and clarifies the conditions under which each post-impact state appears. In this context, a rational method to avoid the singularities arising from dependent constraints is coined. The results confirm theoretically the observed tendency of skew (bridge deck) segments to bind in their obtuse corners and rotate in such a way that the skew angle increases. Further, the study offers equations which describe the contact kinematics between two adjacent skew planar rigid bodies. The same equations can be used to treat successively as many pairs of skew bridge-segments as necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dimitrakopoulos, E.G.: Analysis of a frictional oblique impact observed in skew bridges. Nonlinear Dyn. 60, 575–595 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dimitrakopoulos, E.G., Makris, N., Kappos, A.J.: Dimensional analysis of the earthquake-induced pounding between adjacent structures. Earthq. Eng. Struct. Dyn. 38(7), 867–886 (2009)

    Article  Google Scholar 

  3. Dimitrakopoulos, E.G., Makris, N., Kappos, A.J.: Dimensional analysis of the earthquake response of a pounding oscillator. J. Eng. Mech. 136(3), 299–310 (2010)

    Article  Google Scholar 

  4. EERL (Earthquake Engineering Research Laboratory): In: Jennings, P.C. (ed.) Engineering Features of the San Fernando Earthquake of February 9, 1971. California Institute of Technology, Pasadena (1971)

    Google Scholar 

  5. Elnashai, A.S., Gencturk, B., Kwon, O.S., Hashash, Y.M.A., Kim, S.J., Jeong, S.-H., Dukes, J.: The Maule (Chile) earthquake of February 27, 2010: development of hazard, site specific ground motions and back-analysis of structures. Soil Dyn. Earthq. Eng. 42, 229–245 (2012)

    Article  Google Scholar 

  6. Zhang, H., Li, J., Saiidi, S.: Evaluation of performance of a skew bridge in Wenchuan 2008 earthquake. In: Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great. East Japan Earthquake, Tokyo, Japan (2012)

    Google Scholar 

  7. Kaviani, P., Zareian, F., Taciroglu, E.: Seismic behavior of reinforced concrete bridges with skew-angled seat-type abutments. Eng. Struct. 45, 137–150 (2012)

    Article  Google Scholar 

  8. Kalantari, A., Amjadian, M.: An approximate method for dynamic analysis of skewed highway bridges with continuous rigid deck. Eng. Struct. 32(9), 2850–2860 (2010)

    Article  Google Scholar 

  9. Meng, J., Lui, E.M.: Torsional effects on short-span highway bridges. Comput. Struct. 75(6), 619–629 (2000)

    Article  Google Scholar 

  10. He, X.H., Sheng, X.W., Scanlon, A., Linzell, D.G., Yu, X.D.: Skewed concrete box girder bridge static and dynamic testing and analysis. Eng. Struct. 39, 38–49 (2012)

    Article  Google Scholar 

  11. Robson, B.N., Harik, I.E., Gupta, V.: Effectiveness of seismic isolation of highly skewed P/C I-girder bridge. J. Bridge Eng. 6(3), 221–224 (2001)

    Article  Google Scholar 

  12. Priestley, M.J.N., Calvi, G.M., Seible, F.: Seismic Design and Retrofit of Bridges. Wiley, New York (1996)

    Book  Google Scholar 

  13. Kawashima, K., Unjoh, S., Hoshikuma, J., Kosa, K.: Damage of transportation facility due to 2010 Chile earthquake (April 5 2010). Bridge team dispatched by Japan society of civil engineers (2010). http://peer.berkeley.edu/events/pdf/2010/Bridge_Damage_by_Chile_EQ_JSCE_Team.pdf

  14. Huo, Y., Zhang, J.: Effects of pounding and skewness on seismic responses of typical multi-span highway bridges using fragility function method. J. Bridge Eng. (2012). doi:10.1061/(ASCE)BE.1943-5592.0000414

    Google Scholar 

  15. Taflanidis, A.A.: Optimal probabilistic design of seismic dampers for the protection of isolated bridges against near-fault seismic excitations. Eng. Struct. 33(12), 3496–3508 (2011)

    Article  Google Scholar 

  16. Dimitrakopoulos, E.G., Makris, N., Kappos, A.J.: Dimensional analysis of the earthquake-induced pounding between inelastic structures. Bull. Earthq. Eng. 9(2), 561–579 (2011)

    Article  Google Scholar 

  17. Sevgili, G., Caner, A.: Improved seismic response of multisimple-span skewed bridges retrofitted with link slabs. J. Bridge Eng. 14(6), 452–459 (2009)

    Article  Google Scholar 

  18. Maragakis, E.A., Jennings, P.C.: Analytical models for the rigid body motions of skew bridges. Earthq. Eng. Struct. Dyn. 15(8), 923–944 (1987)

    Article  Google Scholar 

  19. Tirasit, P., Kawashima, K.: Effect of nonlinear seismic torsion on the performance of skewed bridge piers. J. Earthq. Eng. 12(6), 980–998 (2008)

    Article  Google Scholar 

  20. Bignell, J., Lafave, J., Hawkins, N.: Seismic vulnerability assessment of wall pier supported highway bridges using nonlinear pushover analyses. Eng. Struct. 27(14), 2044–2063 (2005)

    Article  Google Scholar 

  21. Abdel-Mohti, A., Pekcan, G.: Seismic response of skewed RC box-girder bridges. Earthq. Eng. Eng. Vib. 7(4), 415–426 (2008)

    Article  Google Scholar 

  22. Maleki, S.: Seismic modeling of skewed bridges with elastomeric bearings and side retainers. J. Bridge Eng. 10(4), 442–449 (2005)

    Article  Google Scholar 

  23. Saadeghvaziri, M., Yazdanimotlagh, A.: Seismic behavior and capacity/demand analyses of three multi-span simply supported bridges. Eng. Struct. 30(1), 54–66 (2008)

    Article  Google Scholar 

  24. Watanabe, G., Kawashima, K.: Effectiveness of cable-restrainer for mitigating rotation of a skewed bridge subjected to strong ground shaking. In: 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada (2004). Paper No. 789

    Google Scholar 

  25. EERI Earthquake Engineering Research Institute. The Tehuacan, Mexico, Earthquake of June 15, 1999. EERI, Oakland, California (1999)

  26. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control, 2nd edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  27. Glocker, C.: Set-Valued Force Laws: Dynamics of Non-smooth Systems. Springer, New York (2001)

    Book  Google Scholar 

  28. Mistakidis, E., Stavroulakis, G.E.: Nonconvex Optimization in Mechanics: Algorithms, Heuristics, and Engineering Applications by the F.E.M. Kluwer Academic, Boston (1998)

    Book  MATH  Google Scholar 

  29. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley/VCH, Weinheim (2004)

    Google Scholar 

  30. Panagiotopoulos, P.D.: Dynamic and incremental variational inequality principles, differential inclusions and their applications to co-existent phases problems. Acta Mech. 40(1–2), 85–107 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Payr, M., Glocker, C.: Oblique frictional impact of a bar: analysis and comparison of different impact laws. Nonlinear Dyn. 41(4), 361–383 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Flores, P., Leine, R., Glocker, C.: Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systems. Nonlinear Dyn. 69(4), 2117–2133 (2012)

    Article  MathSciNet  Google Scholar 

  33. Dimitrakopoulos, E.G.: Seismic response analysis of skew bridges with pounding deck–abutment joints. Eng. Struct. 33(3), 813–826 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the financial support for this research provided by the Research Grants Council of Hong Kong, under grant reference number DAG12EG03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias G. Dimitrakopoulos.

Appendix

Appendix

The determinate |G NN | is

$$ \vert\mathbf{G}_{NN} \vert= \frac{ ( r_{11}r_{21} - r_{12}r_{22} )^{2}}{I_{1}I_{2}} + \biggl[ \frac{ ( r_{11} - r_{12} )^{2}}{I_{1}} + \frac{ ( r_{21} - r_{22} )^{2}}{I_{2}} \biggr] \biggl( \frac{1}{m_{1}} + \frac{1}{m_{2}} \biggr) $$
(58)

The inverse of matrix \(( \mathbf{G}_{NN} + \mathbf{G}_{NT}\bar{\bar{\boldsymbol{\mu}}} )\) and its determinate D 1 can be written as

$$ \begin{aligned} &\bigl( \mathbf{G}_{NN} + \mathbf{G}_{NT}\bar{\bar{\boldsymbol{\mu}}} \bigr)^{ - 1} \\ &{\quad = \frac{1}{D_{1}} \left( \begin{array}{c@{\quad}c} \frac{1}{m_{1}} + \frac{r_{12}^{2} + \mu r_{12}r_{T1}}{I_{1}} + \frac{1}{m_{2}} + \frac{r_{22}^{2} + \mu r_{22}r_{T2}}{I_{2}} & - ( \frac{1}{m_{1}} + \frac{r_{11}r_{12} + \mu r_{11}r_{T1}}{I_{1}} + \frac{1}{m_{2}} + \frac{r_{21}r_{22} + \mu r_{21}r_{T2}}{I_{2}} ) \\ - ( 1 + \frac{r_{11}r_{12} + \mu r_{12}r_{T1}}{I_{1}} + \frac{1}{m_{2}} + \frac{r_{21}r_{22} + \mu r_{22}r_{T2}}{I_{2}} ) & \frac{1}{m_{1}} + \frac{r_{11}^{2} + \mu r_{11}r_{T1}}{I_{1}} + \frac{1}{m_{2}} + \frac{r_{21}^{2} + \mu r_{21}r_{T2}}{I_{2}} \end{array} \right)} \\ &D_{1} = \vert\mathbf{G}_{NN} + \mathbf{G}_{NT} \bar{\bar{\boldsymbol{\mu}}} \vert = \frac{m_{1} + m_{2}}{m_{1}m_{2}} \biggl[ \frac{ ( r_{11} - r_{12} )^{2}}{I_{1}} + \frac{ ( r_{21} - r_{22} )^{2}}{I_{2}} \biggr] \\ & \hphantom{D_{1} =} {}+ \frac{r_{12}r_{21} - r_{11}r_{22}}{I_{1}I_{2}} \bigl[ \mu r_{T1} ( r_{21} - r_{22} ) + \mu r_{T2} ( r_{12} - r_{11} ) + r_{12}r_{21} - r_{11}r_{22} \bigr] \end{aligned} $$
(59)

Similarly for the inverse of matrix \(( \mathbf{G}_{NN} - \mathbf{G}_{NT}\bar{\bar{\boldsymbol{\mu}}} )\) and its determinate D 2, we have

$$ \begin{aligned} &\bigl( \mathbf{G}_{NN} - \mathbf{G}_{NT}\bar{\bar{\boldsymbol{\mu}}} \bigr)^{ - 1} \\ &\quad{= \frac{1}{D_{2}} \left( \begin{array}{c@{\quad}c} \frac{1}{m_{1}} + \frac{1}{m_{2}} + \frac{r_{12}^{2} - \mu r_{12}r_{T1}}{I_{1}} + \frac{r_{22}^{2} - \mu r_{22}r_{T2}}{I_{2}} & - ( \frac{1}{m_{1}} + \frac{1}{m_{2}} + \frac{r_{11}r_{12} - \mu r_{11}r_{T1}}{I_{1}} + \frac{r_{21}r_{22} - \mu r_{21}r_{T2}}{I_{2}} ) \\ - ( \frac{1}{m_{1}} + \frac{1}{m_{2}} + \frac{r_{11}r_{12} - \mu r_{12}r_{T1}}{I_{1}} + \frac{r_{21}r_{22} - \mu r_{22}r_{T2}}{I_{2}} ) & \frac{1}{m_{1}} + \frac{1}{m_{2}} + \frac{r_{11}^{2} - \mu r_{11}r_{T1}}{I_{1}} + \frac{r_{21}^{2} - \mu r_{21}r_{T2}}{I_{2}} \end{array} \right)} \\ &D_{2} = \vert\mathbf{G}_{NN} - \mathbf{G}_{NT} \bar{\bar{\boldsymbol{\mu}}} \vert= \frac{m_{1} + m_{2}}{m_{1}m_{2}} \biggl[ \frac{ ( r_{11} - r_{12} )^{2}}{I_{1}} + \frac{ ( r_{21} - r_{22} )^{2}}{I_{2}} \biggr] \\ &\hphantom{D_{2} =} {}+ \frac{r_{12}r_{21} - r_{11}r_{22}}{I_{1}I_{2}}\big[ \mu r_{T1} ( r_{22} - r_{21} ) + \mu r_{T2} ( r_{11} - r_{12} ) + r_{12}r_{21} - r_{11}r_{22}\big] \end{aligned} $$
(60)

For μ=0 (59) and (60) reduce to (26) and (58) of frictionless collisions.

Finally, the product \(\mathbf{G}_{TN}\mathbf{G}_{NN}^{ - 1}\mathbf{G}_{NT}\) returns the scalar value:

$$ \begin{aligned}[b] &\mathbf{G}_{TN}\mathbf{G}_{NN}^{ - 1} \mathbf{G}_{NT} \\ &\quad= \frac{1}{\vert \mathbf{G}_{NN} \vert} \biggl[ \biggl( \frac{1}{m_{1}} + \frac{1}{m_{2}} \biggr) \biggl( \frac{r_{11} - r_{12}}{I_{1}}r_{T1} + \frac{r_{21} - r_{22}}{I_{2}}r_{T2} \biggr)^{2} + \biggl( \frac{r_{T1}^{2}}{I_{1}} + \frac{r_{T2}^{2}}{I_{2}} \biggr)\frac{ ( r_{11}r_{22} - r_{12}r_{21} )^{2}}{I_{1}I_{2}} \biggr] \end{aligned} $$
(61)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitrakopoulos, E.G. Nonsmooth analysis of the impact between successive skew bridge-segments. Nonlinear Dyn 74, 911–928 (2013). https://doi.org/10.1007/s11071-013-1012-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1012-7

Keywords

Navigation