Skip to main content
Log in

Symmetries and conserved quantities for fractional action-like Pfaffian variational problems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The fractional Pfaffian variational problems and the fractional Noether theory are studied under a fractional model presented by El-Nabulsi. Firstly, the fractional action-like Pfaffian variational problem is presented, the El-Nabulsi–Pfaff–Birkhoff–d’Alembert fractional principle is established, then the El-Nabulsi–Birkhoff fractional equations are derived; secondly, the definitions and criteria of the fractional Noether symmetric transformations are given, which are based on the invariance of El-Nabulsi–Pfaffian action under the infinitesimal transformations of group, then the inner relationship between a fractional Noether symmetry and a fractional conserved quantity is established; finally, two examples are given to illustrate the application of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  2. Miller, K.S., Ross, B.: An Introduction to the Fractional Integrals and Derivatives—Theory and Applications. Wiley Inc., New York (1993)

    Google Scholar 

  3. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  4. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  5. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  6. Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to discretizing fractional order derivatives—an expository review. Nonlinear Dyn. 38(1–4), 155 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jesus, I.S., Machado, J.A.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54(3), 263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baleanu, D., Golmankhaneh, A.K., Golmankhaneh, A.K., Nigmatullin, R.R.: Newtonian law with memory. Nonlinear Dyn. 60, 81–86 (2010)

    Article  MATH  Google Scholar 

  9. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53(2), 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  10. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55(3), 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  11. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Agrawal, O.P.: Fractional variational calculus and the transversality conditions. J. Phys. A, Math. Gen. 39, 10375–10384 (2006)

    Article  MATH  Google Scholar 

  13. Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A, Math. Theor. 40, 6287–6303 (2007)

    Article  MATH  Google Scholar 

  14. Agrawal, O.P., Muslih, S.I., Baleanu, D.: Generalized variational calculus in terms of multi-parameters fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 16(12), 4756–4767 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 32–337 (2004)

    Google Scholar 

  16. Atanacković, T.M.: Variational problems with fractional derivatives: Euler–Lagrange equations. J. Phys. A, Math. Theor. 41, 095201 (2008)

    Article  Google Scholar 

  17. Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, 1490–1500 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann–Liouville fractional derivatives. Nuovo Cimento B 119(1), 73–79 (2004)

    Google Scholar 

  19. Muslih, S.I., Baleanu, D.: Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599–606 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Herzallah, M.A.E., Baleanu, D.: Fractional Euler–Lagrange equations revisited. Nonlinear Dyn. 69, 977–982 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jarad, F., Abdeljawad, T., Baleanu, D.: Fractional variational optimal control problems with delayed arguments. Nonlinear Dyn. 62, 609–614 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Baleanu, D., Muslih, S.I., Rabei, E.M.: On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 53, 67–74 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Herzallah, M.A.E., Baleanu, D.: Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dyn. 58, 385–391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Baleanu, D., Trujillo, J.J.: On exact solutions of a class of fractional Euler–Lagrange equations. Nonlinear Dyn. 52, 331–335 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. El-Nabulsi, A.R.: A fractional approach to nonconservative Lagrangian dynamical systems. Fizika A 14(4), 289–298 (2005)

    Google Scholar 

  26. El-Nabulsi, R.A.: Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann–Liouville derivatives of order (a, b). Math. Methods Appl. Sci. 30, 1931–1939 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. El-Nabulsi, A.R., Torres, D.F.M.: Fractional action-like variational problems. J. Math. Phys. 49, 053521 (2008)

    Article  MathSciNet  Google Scholar 

  28. El-Nabulsi, A.R.: Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems. Chaos Solitons Fractals 42, 52–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. El-Nabulsi, A.R.: A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators. Appl. Math. Lett. 24, 1647–1653 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. El-Nabulsi, A.R.: Fractional variational problems from extended exponentially fractional integral. Appl. Math. Comput. 217, 9492–9496 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. El-Nabulsi, R.A.: Universal fractional Euler–Lagrange equation from a generalized fractional derivate operator. Cent. Eur. J. Phys. 9(1), 250–256 (2011)

    Article  Google Scholar 

  32. Herzallah, M.A.E., Muslih, S.I., Baleanu, D., Rabei, E.M.: Hamilton–Jacobi and fractional like action with time scaling. Nonlinear Dyn. 66, 549–555 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Frederico, G.S.F., Torres, D.F.M.: A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334, 834–846 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Frederico, G.S.F., Torres, D.F.M.: Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53, 215–222 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Frederico, G.S.F.: Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem. Int. Math. Forum 3(10), 479–493 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Frederico, G.S.F., Torres, D.F.M.: Fractional Noether’s theorem in the Riesz–Caputo sense. Appl. Math. Comput. 217(3), 1023–1033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Atanacković, T.M., Konjik, S., Pilipović, S., Simić, S.: Variational problems with fractional derivatives: Invariance conditions and Noether’s theorem. Nonlinear Anal. 71, 1504–1517 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cresson, J.: Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys. 48, 033504 (2007)

    Article  MathSciNet  Google Scholar 

  39. Frederico, G.S.F., Torres, D.F.M.: Constants of motion for fractional action-like variational problems. Int. J. Appl. Math. 19(1), 97–104 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Frederico, G.S.F., Torres, D.F.M.: Non-conservative Noether’s theorem for fractional action-like variational problems with intrinsic and observer times. Int. J. Ecol. Econ. Stat. 9(F07), 74–82 (2007)

    MathSciNet  Google Scholar 

  41. Birkhoff, G.D.: Dynamical Systems. AMS College Publication, Providence (1927)

    MATH  Google Scholar 

  42. Santilli, R.M.: Foundations of Theoretical Mechanics II. Springer, New York (1983)

    Book  MATH  Google Scholar 

  43. Mei, F.X., Shi, R.C., Zhang, Y.F., Wu, H.B.: Dynamics of Birkhoffian System. Beijing Institute of Technology Press, Beijing (1996) (in Chinese)

    Google Scholar 

  44. Galiullan, A.S.: Analytical Dynamics. Nauka, Moscow (1989) (in Russian)

    Google Scholar 

  45. Galiullin, A.S., Gafarov, G.G., Malaishka, R.P., Khwan, A.M.: Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems. UFN, Moscow (1997) (in Russian)

    Google Scholar 

  46. Mei, F.X.: Noether theory of Birkhoffian system. Sci. China Ser. A 36(12), 1456–1467 (1993)

    MathSciNet  MATH  Google Scholar 

  47. Mei, F.X.: On the Birkhoffian mechanics. Int. J. Non-Linear Mech. 36(5), 817–834 (2001)

    Article  MATH  Google Scholar 

  48. Guo, Y.X., Luo, S.K., Shang, M., Mei, F.X.: Birkhoffian formulations of nonholonomic constrained systems. Rep. Math. Phys. 47(3), 313–322 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zheng, G.H., Chen, X.W., Mei, F.X.: First integrals and reduction of the Birkhoffian system. J. Beijing Int. Technol. 10(1), 17–22 (2001)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, Y.: Poisson theory and integration method of Birkhoffian systems in the event space. Chin. Phys. B 19(8), 080301 (2010)

    Article  Google Scholar 

  51. Wu, H.B., Mei, F.X.: Type of integral and reduction for a generalized Birkhoffian system. Chin. Phys. B 20(10), 104501 (2011)

    Article  Google Scholar 

  52. Jiang, W., Li, L., Li, Z.J., Luo, S.K.: Lie symmetrical perturbation and a new type of non-Noether adiabatic invariants for disturbed generalized Birkhoffian systems. Nonlinear Dyn. doi:10.1007/s11071-011-0051-1

  53. Li, Z., Luo, S.: A new Lie symmetrical method of finding conserved quantity for Birkhoffian systems. Nonlinear Dyn. doi:10.1007/s11071-012-0517-9

  54. Zhang, Y., Mei, F.X.: Effects of constraints on Noether symmetries and conserved quantities in a Birkhoffian system. Acta Phys. Sin. 53(8), 2419–2423 (2004) (in Chinese)

    MathSciNet  MATH  Google Scholar 

  55. Mei, F.X.: Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Science Press, Beijing (1999) (in Chinese)

    Google Scholar 

  56. El-Nabulsi, A.R.: Non-linear dynamics with non-standard Lagrangians. Qual. Theory Dyn. Syst. doi:10.1007/s12346-012-0074-0

  57. El-Nabulsi, A.R.: Calculus of variations with hyperdifferential operators from Tabasaki–Takebe–Toda lattice arguments. RACSAM. doi:10.1007/s13398-012-0086-2

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant Nos. 10972151 and 11272227), the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province (No. CXZZ11_0949), and the Innovation Program for Postgraduate of Suzhou University of Science and Technology (No. SKCX11S_050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zhou, Y. Symmetries and conserved quantities for fractional action-like Pfaffian variational problems. Nonlinear Dyn 73, 783–793 (2013). https://doi.org/10.1007/s11071-013-0831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0831-x

Keywords

Navigation