Skip to main content
Log in

Newtonian law with memory

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study we analyzed the Newtonian equation with memory. One physical model possessing memory effect is analyzed in detail. The fractional generalization of this model is investigated and the exact solutions within Caputo and Riemann–Liouville fractional derivatives are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  2. Miller, K.S., Ross, B.: An Introduction to the Fractional Integrals and Derivatives—Theory and Application. Wiley, New York (1993)

    Google Scholar 

  3. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  4. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Google Scholar 

  5. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  6. Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  7. Kilbas, A.A., Srivastava, H.H., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, The Netherlands (2006)

    MATH  Google Scholar 

  8. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Connecticut (2006)

    Google Scholar 

  9. Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997)

    Google Scholar 

  10. West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003)

    Google Scholar 

  11. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jesus, I.S., Machado, J.A.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54(3), 263 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to discretizing fractional order derivatives—an expository review. Nonlinear Dyn. 38(1–4), 155 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Scalas, E., Gorenflo, R., Mainardi, F.: Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. Phys. Rev. E 69, 011107-1 (2004)

    Article  MathSciNet  Google Scholar 

  15. Yong, J., Zhang, X.: Heat equations with memory. Nonlinear Analysis 63, e99–e108 (2005)

    Article  MATH  Google Scholar 

  16. Le Mehaute, A., Nigmatullin, R.R., Nivanen, L.: Fleches du Temps et Geometrie Fractale. Editions Hermes, Paris (1998)

    MATH  Google Scholar 

  17. Nigmatullin, R.R., Le Mehaute, A.: Is there geometrical/physical meaning of the fractional integral with complex exponent? J. Non-Cryst. Sol. 351, 2888 (2005)

    Article  Google Scholar 

  18. Nigmatullin, R.R.: Fractional’ kinetic equations and ‘universal’ decoupling of a memory function in mesoscale region. Physica A 363, 282 (2006)

    Article  Google Scholar 

  19. Nigmatullin, R.R., Arbuzova, A.A., Salehlib, F., Gizb, A., Bayrakb, I., Catalgil-Giz, H.: The first experimental confirmation of the fractional kinetics containing the complex-power-law exponents: Dielectric measurements of polymerization reactions. Physica B: Phys. Cond. Matt. 388, 418 (2007)

    Article  Google Scholar 

  20. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 45, 765 (2006)

    Article  Google Scholar 

  21. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  22. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  23. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000)

    Article  Google Scholar 

  24. Klimek, K.: Fractional sequential mechanics—models with symmetric fractional derivative. Czechoslov. J. Phys. E 51, 1348–1354 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Klimek, K.: Lagrangean and Hamiltonian fractional sequential mechanics. Czechoslov. J. Phys. E 52, 1247–1253 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tarasov, V.E., Zaslavsky, G.M.: Fractional Ginzburg–Landau equation for fractal media. Physica A 354, 249–261 (2005)

    Article  Google Scholar 

  28. Muslih, S., Baleanu, D.: Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599–606 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Baleanu, D., Golmankhaneh, A.K., Golmankhaneh Alireza, K.: The dual action of fractional multi-time Hamilton equations. Int. J. Theor. Phys. (in press). doi:10.1007/s10773-009-0042-x

  30. Baleanu, D., Agrawal, O.P.: Fractional Hamilton formalism within Caputo’s derivative Czechoslov. J. Phys. 56, 1087–1092 (2006)

    MathSciNet  Google Scholar 

  31. Baleanu, D., Muslih, S., Tas, K.: Fractional Hamiltonian analysis of higher order derivatives systems. J. Math. Phys. 47, 103503 (2006)

    Article  MathSciNet  Google Scholar 

  32. Tarasov, V.E.: Fractional statistical mechanics. Chaos 16, 033108–033115 (2006)

    Article  MathSciNet  Google Scholar 

  33. Tarasov, V.E.: Fractional Variation for Dynamical systems: Hamilton and Lagrange Approaches. J. Phys. A: Math. Gen. 39(26), 8409–8425 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rabei, E.M., Nawafleh, K.I., Hiijawi, R.S., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891–897 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rabei, E.M., Almayteh, I., Muslih, S.I., Baleanu, D.: Hamilton–Jaccobi formulation of systems with Caputo’s fractional derivative. Phys. Scripta 77, 015101 (2007)

    Article  Google Scholar 

  36. Gastao, S.F.F., Delfim, F.M.T.: A formulation of Noether’s theorem for fractional problems of calculus of variations. J. Math. Anal. Appl. 334, 834–846 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Baleanu, D., Golmankhaneh, Alireza K., Golmankhaneh, Ali K.: Fractional Nambu mechanics. Int. J. Theor. Phys. 48, 1044 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Golmankhaneh, Alireza K.: Fractional Poisson bracket. Turk. J. Phys. 32, 241 (2008)

    Google Scholar 

  39. Baleanu, D., Agrawal, O.P.: Fractional Hamilton formalism within Caputo’s derivative Czechoslov. J. Phys. 56, 1087–1092 (2006)

    MathSciNet  Google Scholar 

  40. Baleanu, D., Trujillo, J.J.: On exact solutions of a class of fractional Euler–Lagrange equations. Nonlinear Dyn. 52, 331 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  41. Agrawal, O.P., Baleanu, D.: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Control 13, 1269 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. Agrawal, O.P.: A general finite element formulation for fractional variational problems. J. Math. Anal. Appl. 337, 1 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  43. Agrawal, O.P.: Generalized Euler–Lagrange Equations and Transversality Conditions for FVPs in terms of the Caputo Derivative. J. Vib. Control 13, 1217 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baleanu, D., Golmankhaneh, A.K., Golmankhaneh, A.K. et al. Newtonian law with memory. Nonlinear Dyn 60, 81–86 (2010). https://doi.org/10.1007/s11071-009-9581-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9581-1

Keywords

Navigation