Skip to main content
Log in

Noether Symmetry and Conserved Quantity for FractiOnal Birkhoffian Mechanics and Its Applications

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Noether theorem is an important aspect to study in dynamical systems. Noether symmetry and conserved quantity for the fractional Birkhoffian system are investigated. Firstly, fractional Pfaff actions and fractional Birkhoff equations in terms of combined Riemann-Liouville derivative, Riesz-Riemann-Liouville derivative, combined Caputo derivative and Riesz-Caputo derivative are reviewed. Secondly, the criteria of Noether symmetry within combined Riemann-Liouville derivative, Riesz-Riemann-Liouville derivative, combined Caputo derivative and Riesz-Caputo derivative are presented for the fractional Birkhoffian system, respectively. Thirdly, four corresponding conserved quantities are obtained. The classical Noether identity and conserved quantity are special cases of this paper. Finally, four fractional models, such as the fractional Whittaker model, the fractional Lotka biochemical oscillator model, the fractional Hénon-Heiles model and the fractional Hojman-Urrutia model are discussed as examples to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A: Math. Theor. 40, No 24 (2007), 6287–6303.

    MathSciNet  MATH  Google Scholar 

  2. O.P. Agrawal, Generalized variational problems and Euler-Lagrange equations. Comput. Math. Appl. 59, No 5 (2010), 1852–1864.

    MathSciNet  MATH  Google Scholar 

  3. J. Aguirre, J.C. Vallejo, M.A.F. Sanjuán, Wada basins and chaotic invariant sets in the Hénon-Heiles system. Phys. Rev. E 64, No 6 (2001), 066208.

    Google Scholar 

  4. T.M. Atanacković, S. Konjik, S. Pilipović, S. Simić, Variational problems with fractional derivatives: Invariance conditions and Noether’s theorem. Nonlinear Anal. 71, No 5-6 (2009), 1504–1517.

    MathSciNet  MATH  Google Scholar 

  5. D. Baleanu, S.I. Muslih, E.M. Rabei, On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 53, No 1-2 (2008), 67–74.

    MathSciNet  MATH  Google Scholar 

  6. M. Brack, Bifurcation cascades and self-similarity of periodic orbits with analytical scaling constants in Hénon-Heiles type potentials. Found. Phys. 31, No 2 (2001), 209–232.

    MathSciNet  Google Scholar 

  7. L.C. Chen, W.Q. Zhu, Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations. Nonlinear Dyn. 56, No 3 (2009), 231–241.

    MathSciNet  MATH  Google Scholar 

  8. L.Q. Chen, W.J. Zhao, W.J. Zu, Transient responses of an axially accelerating viscoelastic string constituted by a fractional differentiation law. J. Sound Vib. 278, No 4-5 (2004), 861–871.

    MATH  Google Scholar 

  9. X.W. Chen, G.L. Zhao, F.X. Mei, A fractional gradient representation of the Poincare equations. Nonlinear Dyn. 73, No 73 (2013), 579–582.

    MathSciNet  MATH  Google Scholar 

  10. G.T. Ding, Hamiltonization of Whittaker equations. Acta Phys. Sin. 59, No 12 (2007), 8326–8329.

    Google Scholar 

  11. A.D. Drozdov, B. Israel, Fractional differential models in finite viscoelasticity. Acta Mech. 124, No 1 (1997), 155–180.

    MathSciNet  MATH  Google Scholar 

  12. R.A.C. Ferreira, A.B. Malinowska, A counterexample to a Frederico-Torres fractional Noether-type theorem. J. Math. Anal. Appl. 429, No 2 (2015), 1370–1373.

    MathSciNet  MATH  Google Scholar 

  13. G.S.F. Frederico, D.F.M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem. Int. Math. Forum 3, No 9-12 (2008), 479–493.

    MathSciNet  MATH  Google Scholar 

  14. G.S.F. Frederico, M.J. Lazo, Fractional Noether’s theorem with classical and Caputo derivatives: constants of motion for non-conservative systems. Nonlinear Dyn. 85, No 2 (2016), 839–851.

    MathSciNet  MATH  Google Scholar 

  15. G.S.F. Frederico, D.F.M. Torres, A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334, No 2 (2007), 834–846.

    MathSciNet  MATH  Google Scholar 

  16. G.S.F. Frederico, D.F.M. Torres, Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53, No 3 (2008), 215–222.

    MathSciNet  MATH  Google Scholar 

  17. G.S.F. Frederico, D.F.M. Torres, Fractional isoperimetric Noether’s theorem in the Riemann-Liouville sense. Rep. Math. Phys. 71, No 3 (2013), 291–304.

    MathSciNet  MATH  Google Scholar 

  18. G.S.F. Frederico, D.F.M. Torres, Fractional Noether’s theorem in the Riesz-Caputo sense. Appl. Math. Comput. 217, No 3 (2010), 1023–1033.

    MathSciNet  MATH  Google Scholar 

  19. G.S.F. Frederico, D.F.M. Torres, Non-conservative Noether’s theorem for fractional action-like variational problems with intrinsic and observer times. Int. J. Ecol. Econ. Stat. 91, No F7 (2007), 74–82.

    MathSciNet  Google Scholar 

  20. A.S. Galiullan, Analytical Dynamics. Nauka, Moscow (1989) (in Russian).

    Google Scholar 

  21. S. Hojman, L.F. Urrutia, On the inverse problem of the calculus of variations. J. Math. Phys. 22, No 9 (1981), 1896–1903.

    MathSciNet  MATH  Google Scholar 

  22. M. Hénon, C. Helles, The applicability of the third integral of motion: some numerical experiments. Astron. J. 69, No 1 (1964), 73–79.

    MathSciNet  Google Scholar 

  23. F. Jarad, T. Abdeljawad, D. Baleanu, Fractional variational optimal control problems with delayed arguments. Nonlinear Dyn. 62, No 3 (2010), 609–614.

    MathSciNet  MATH  Google Scholar 

  24. Q.L. Jia, H.B. Wu, F.X. Mei, Noether symmetries and conserved quantities for fractional forced Birkhoffian systems. J. Math. Anal. Appl. 442, No 2 (2016), 782–795.

    MathSciNet  MATH  Google Scholar 

  25. M. Klimek, Stationary-conservation laws for fractional differential equations with variable coefficients. J. Phys. A: Math. Gen. 35, No 35 (2002), 6675–6693.

    MATH  Google Scholar 

  26. L. Li, S.K. Luo, Fractional generalized Hamiltonian mechanics. Acta Mech. 224, No 8 (2013), 1757–1771.

    MathSciNet  MATH  Google Scholar 

  27. S.K. Luo, Y. Dai, X.T. Zhang, J.M. He, A new method of fractional dynamics, i.e., fractional Mei symmetries method for finding conserved quantity, and its applications to physics. Int. J. Theor. Phys. 55, No 10 (2016), 4298–4309.

    MATH  Google Scholar 

  28. S.K. Luo, Y.L. Xu, Fractional Birkhoffian mechanics. Acta Mech. 226, No 3 (2015), 829–844.

    MathSciNet  MATH  Google Scholar 

  29. A.B. Malinowska, A formulation of the fractional Noether-type theorem for multidimensional Lagrangians. Appl. Math. Lett. 25, No 11 (2012), 1941–1946.

    MathSciNet  MATH  Google Scholar 

  30. A.B. Malinowska, D.F.M. Torres, Fractional calculus of variations for a combined Caputo derivative. Fract. Calc. Appl. Anal. 14, No 4 (2011), 523–537; DOI: 10.2478/s13540-011-0032-6; https://www.degruyter.com/view/j/fca.2011.14.issue-4/issue-files/fca.2011.14.issue-4.xml.

    MathSciNet  MATH  Google Scholar 

  31. A.B. Malinowska, D.F.M. Torres, Towards a combined fractional mechanics and quantization. Fract. Calc. Appl. Anal. 15, No 3 (2012), 407–417; DOI: 10.2478/s13540-012-0029-9; https://www.degruyter.com/view/j/fca.2012.15.issue-3/issue-files/fca.2012.15.issue-3.xml.

    MathSciNet  MATH  Google Scholar 

  32. F.X. Mei, Analytical Mechanics (II). Beijing Institute of Technology, Beijing (2013) (in Chinese).

    Google Scholar 

  33. F.X. Mei, Dynamics of Generalized Birkhoffian System. Science Press, Beijing (2013) (in Chinese).

    Google Scholar 

  34. F.X. Mei, R.C. Shi, Y.F. Zhang, H.B. Wu, Dynamics of Birkhoff Systems. Beijing Institute of Technology, Beijing (1996) (in Chinese).

    Google Scholar 

  35. S.I. Muslih, D. Baleanu, Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives. J. Math. Anal. Appl. 304, No 2 (2005), 599–606.

    MathSciNet  MATH  Google Scholar 

  36. T. Odzijewicz, A.B. Malinowska, D.F.M. Torres, Generalized fractional calculus with applications to the calculus of variations. Comput. Math. Appl. 64, No 10 (2012), 3351–3366.

    MathSciNet  MATH  Google Scholar 

  37. F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, No 2 (1996), 1890–1899.

    MathSciNet  Google Scholar 

  38. F. Riewe, Mechanics with fractional derivatives. Phys. Rev. E 55, No 3 (1997), 3581–3592.

    MathSciNet  Google Scholar 

  39. R.M. Santilli, Foundations of Theoretical Mechanics II. Springer-Verlag, New York (1983).

    MATH  Google Scholar 

  40. V.E. Tarasov, G.M. Zaslavsky, Nonholonomic constraints with fractional derivatives. J. Phys. A: Math. Gen. 39, No 31 (2006), 9797–9815.

    MathSciNet  MATH  Google Scholar 

  41. Z.H. Wang, H.Y. Hu, Stability of a linear oscillator with damping force of fractional order derivative. Sci. China: Phys. Mech. Astron. 53, No 2 (2010), 345–352.

    Google Scholar 

  42. Y.L. Xu, S.K. Luo, Stability for manifolds of equilibrium state of fractional generalized Hamiltonian systems. Nonlinear Dyn. 76, No 1 (2014), 657–672.

    MathSciNet  MATH  Google Scholar 

  43. B. Yan, Y. Zhang, Noether’s theorem for fractional Birkhoffian systems of variable order. Acta Mech. 227, No 9 (2016), 2439–2449.

    MathSciNet  MATH  Google Scholar 

  44. X.H. Zhai, Y. Zhang, Noether symmetries and conserved quantities for fractional Birkhoffian systems with time delay. Commun. Nonlinear Sci. Numer. Simulat. 36, No 1-2 (2016), 81–97.

    MathSciNet  MATH  Google Scholar 

  45. S.H. Zhang, B.Y. Chen, J.L. Fu, Hamilton formalism and Noether symmetry for mechanico electrical systems with fractional derivatives. Chin. Phys. B 21, No 10 (2012), # 100202.

    Google Scholar 

  46. Y. Zhang, Fractional differential equations of motion in terms of combined Riemann-Liouville derivatives. Chin. Phys. B 21, No 8 (2012), # 084502.

    Google Scholar 

  47. Y. Zhang, X.H. Zhai, Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dyn. 81, No 1 (2015), 469–480.

    MathSciNet  MATH  Google Scholar 

  48. S. Zhou, H. Fu, J.L. Fu, Symmetry theories of Hamiltonian systems with fractional derivatives. Sci. China Phys. Mech. 54, No 10 (2011), 1847–1853.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, CJ., Zhang, Y. Noether Symmetry and Conserved Quantity for FractiOnal Birkhoffian Mechanics and Its Applications. FCAA 21, 509–526 (2018). https://doi.org/10.1515/fca-2018-0028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0028

MSC 2010

Key Words and Phrases

Navigation