Skip to main content
Log in

Smart dampers control in a Remoissenet–Peyrard substrate potential

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A model of spring-block on a moving plate with a nonlinear periodic substrate potential whose shape can be varied continuously as a function of a shape parameter is investigated. The dynamical study of the system for different values of the shape parameter involves the analysis of phase space, the construction of bifurcation diagrams, and the computation of the largest Lyapunov exponent. A smart damper associated with drag coefficient is proposed to reduce stick-slip and chaotic motions. The domain of validity of the control method is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dudko, O., Filippov, A.E., Klafter, J., Urbakh, M.: Chemical control of friction: mixed lubricant monolayers. Tribol. Lett. 12, 217–227 (2002)

    Article  Google Scholar 

  2. Guerra, R., Vanossi, A., Urbakh, M.: Controlling microscopic friction through mechanical oscillations. Phys. Rev. E 78, 036110 (2008). 5 pp.

    Article  Google Scholar 

  3. Galvanetto, U.: Flexible control of chaotic stick-slip mechanical systems. Comput. Methods Appl. Mech. Eng. 190, 6075–6087 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Motchongom-Tingue, M., Kofané, T.C.: Control of stick-slip and chaotic motions on a spring block model using smart dampers. J. Adv. Res. Dyn. Control Syst. 2, 35–52 (2010)

    MathSciNet  Google Scholar 

  5. Patel, M.P., Terry, T., Vasudevan, S., Corke, T.C., He, C.: Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle. J. Aircr. 44, 1264–1274 (2007)

    Article  Google Scholar 

  6. De Souza, S.L.T., Nana Nbendjo, B.R., Caldas, I.L.: Smart dampers to suppress chaos in an impact oscillator. In: Proc. of the 9th Experimental chaos conference, ECC9, Sao Paulo, Brazil, May 29–June 1 (2006)

    Google Scholar 

  7. Siewe Siewe, M., Yamgoué, S.B., Moukam Kakmeni, F.M., Tchawoua, C.: Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory. Nonlinear Dyn. 62, 379–389 (2010)

    Article  MATH  Google Scholar 

  8. Rice, J.R., Tse, S.T.: Dynamic motion of a single degree of freedom system following a rate and state dependent friction law. J. Geophys. Res. 91, 521–530 (1986)

    Article  Google Scholar 

  9. Ruina, A.L.: Constitutive Relations for Frictional Slip. Mechanics of Geomaterials. Wiley, New York (1985)

    Google Scholar 

  10. Biegel, R.L., Sammis, C.G., Dieterich, J.H.: The frictional properties of a simulated gouge having a fractal particle distribution. J. Struct. Geol. 11, 827–846 (1989)

    Article  Google Scholar 

  11. Carlson, J.M., Langer, J.S., Shaw, B.E., Tang, C.: Intrinsic properties of a Burridge–Knopoff model of an earthquake fault. Phys. Rev. A 44, 884–897 (1991)

    Article  Google Scholar 

  12. Yoshizawa, H., McGuiggan, P., Israelachvili, J.: Identification of a second dynamic state during stick-slip motion. Science 259, 1305–1308 (1993)

    Article  Google Scholar 

  13. Feder, H.J.S., Feder, J.: Self organized criticality in a stick-slip process. Phys. Rev. Lett. 66, 2669–2672 (1991)

    Article  Google Scholar 

  14. Djuidje Kenmoe, G., Kenfack Jiotsa, A., Kofané, T.C.: Nonlinear spring model for frictional stick-slip motion. Eur. Phys. J. B 70, 353–361 (2009)

    Article  Google Scholar 

  15. Carlson, J.M., Langer, J.S., Shaw, B.E.: Dynamics of an earthquake faults. Rev. Mod. Phys. 66, 657–670 (1994)

    Article  MATH  Google Scholar 

  16. Braiman, Y., Family, F., Hentschel, G.: Array-enhanced friction in the periodic stick-slip motion of nonlinear oscillators. Phys. Rev. E 53, R3005–R3008 (1996)

    Article  Google Scholar 

  17. Persson, B.N.J.: Theory of friction: the role of elasticity in boundary lubrication. Phys. Rev. B 50, 4771–4786 (1994)

    Article  Google Scholar 

  18. Rozman, M.G., Urbakh, M., Klafter, J.: Stick-slip motion and force fluctuations in a driven two waves potential. Phys. Rev. Lett. 77, 683–686 (1996)

    Article  Google Scholar 

  19. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)

    Article  MathSciNet  Google Scholar 

  20. Bak, P., Tang, C.: Earthquakes as a self-organized critical phenomena. J. Geophys. Res. 94, 15635–15637 (1989)

    Article  Google Scholar 

  21. Burridge, R., Knopoff, L.: Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57, 341–371 (1967)

    Google Scholar 

  22. Pla, O., Nori, F.: Self-organized critical behavior in pinned flux lattices. Phys. Rev. Lett. 67, 919–922 (1991)

    Article  Google Scholar 

  23. Djuidje Kenmoe, G., Kenfack Jiotsa, A., Kofané, T.C.: Stick-slip motion in a driven two-nonsinusoidal Remoissenet–Peyrard potential. Physica D 191, 31–48 (2004)

    Article  MATH  Google Scholar 

  24. Yamgoué, S.B., Kofané, T.C.: Dynamics of driven coupled oscillators with shape deformable potential. Chaos Solitons Fractals 15, 119–129 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nana, L., Kofané, T.C., Coquet, E., Tchofo-Dinda, P.: Intermittent-type chaos in nonsinusoidal driven oscillators. Phys. Scr. T 62, 231–255 (2000)

    Article  Google Scholar 

  26. Heuberger, M., Drummond, C., Israelachvili, J.N.: Coupling of normal and transverse motions during frictional sliding. J. Phys. Chem. B 102, 5038–5041 (1998)

    Article  Google Scholar 

  27. Zaloj, V., Urbakh, M., Klafter, J.: Modifying friction by manipulating normal response to lateral motion. Phys. Rev. Lett. 82, 4823–4826 (1999)

    Article  Google Scholar 

  28. Thompson, P.A., Grest, G.S.: Granular flow: friction and the dilatancy transition. Phys. Rev. Lett. 67, 1751–1754 (1991)

    Article  Google Scholar 

  29. Stoker, J.J.: Nonlinear Vibrations. Interscience, New York (1950)

    MATH  Google Scholar 

  30. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  31. Argyris, J., Mlejnek, H.-P.: Texts on Computational Mechanics 3. Dynamics of Structures. North-Holland, Amsterdam (1991)

    Google Scholar 

  32. Remoissenet, M., Peyrard, M.: A new simple model of a kink bearing Hamiltonian. J. Phys. C, Solid State Phys. 14, L481–L485 (1981)

    Article  Google Scholar 

  33. Remoissenet, M., Peyrard, M.: Soliton dynamics in new models with parametrized periodic double-well and asymmetric substrate potential. Phys. Rev. B 29, 3153–3166 (1984)

    Article  Google Scholar 

  34. Braun, O.M., Kivshar, Y.S., Zelenskaya, I.I.: Kinks in the Frenkel–Kontorova model with long-range interparticle interactions. Phys. Rev. B 41, 7118–7138 (1990)

    Article  Google Scholar 

  35. Willis, R.F. (ed.): Vibration Spectroscopy of Adsorbates. Springer, Berlin (1980)

    Google Scholar 

  36. Braun, O.M., Pashitsky, E.A.: Vibrational excitation and surface diffusion of hydrogen atoms on a tungsten. Phys. Chem. Mech. Surf. 3, 1989–2003 (1985)

    Google Scholar 

  37. Nguenang, J.P., Kenfack Jiotsa, A., Kofané, T.C.: Nonlinear dynamics for magnetic systems with a single-spin potential with variable shapes. Eur. Phys. J. B 48, 519–528 (2005)

    Article  Google Scholar 

  38. Woulache, R.L., Yemélé, D., Kofané, T.C.: Thermal nucleation of kink-antikink pairs in the presence of impurities: the case of a Remoissenet–Peyrard substrate potential. Phys. Rev. E 72, 031604 (2005). 12 pp.

    Article  Google Scholar 

  39. Braun, O.M., Dauxois, T., Peyrard, M.: Solitonic-exchange of surface diffusion. Phys. Rev. B 54, 313–320 (1996)

    Article  Google Scholar 

  40. Motchongom-Tingue, M., Djuidje Kenmoe, G., Kofané, T.C.: Stick-slip motion and static friction in a nonlinear deformable substrate potential. Tribol. Lett. 43, 65–72 (2011). doi:10.1007/s11249-011-9786-6

    Article  Google Scholar 

  41. Djuidje Kenmoe, G., Kofané, T.C.: Frictional stick-slip dynamics in a deformable potential. In: Bhushan, B. (ed.) Scanning Probe Microscopy in Nanoscience and Nanotechnology, vol. 2, pp. 533–549. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  42. Popp, K., Rudolph, M.: Vibration control to avoid stick-slip motion. J. Vib. Control 10, 1585–1600 (2004)

    Article  MATH  Google Scholar 

  43. Chowdhury, K., Roychowdhury, A.: On the onset of chaos in a dissipative measure preserving dynamical system and escape from the Kolmogorov–Arnold–Moser region. Phys. Scr. T 49, 641–644 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Motchongom-Tingue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motchongom-Tingue, M., Djuidjé Kenmoé, G. & Kofané, T.C. Smart dampers control in a Remoissenet–Peyrard substrate potential. Nonlinear Dyn 69, 379–389 (2012). https://doi.org/10.1007/s11071-011-0271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0271-4

Keywords

Navigation