Skip to main content
Log in

Stick-slip vibrations of a self-excited SD oscillator with Coulomb friction

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the stick-slip vibrations of an archetypal self-excited smooth and discontinuous (SD) oscillator are investigated. The mathematical model of the self-excited SD oscillator is established by employing Coulomb’s law to formulate the friction between the surfaces of the mass and the moving belt. Complex dynamical behaviors are demonstrated by equilibrium analysis including stability analysis and supercritical pitchfork bifurcations of the system. Closed-form solutions for both stick-slip motions and pure slip motions of the system can be derived and utilized to examine the influence of the belt speed on the steady-state of the system by using Hamilton function. The evolution of sliding regions and the collision of the trajectories with the sliding region are presented for the forced self-excited system resorting to the numerical simulations. The results obtained here offer an opportunity for us to understand the conversion mechanism between the stick and the slip motions for the friction systems with geometric nonlinearity in engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Wiercigroch, M., Krivtsov, A.M.: Frictional chatter in orthogonal metal cutting. Philos. Trans. R. Soc. Lond. Ser. A 359(1781), 713–738 (2001)

    Article  MATH  Google Scholar 

  2. Liu, Y.X., Song, L., Luo, P., Jin, H.: Theoretical study on pipe friction parameter identification in water distribution systems. Can. J. Civ. Eng. 46(9), 789–795 (2019)

    Article  Google Scholar 

  3. Burridge, R., Knopoff, L.: Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57(3), 341–371 (1967)

    Google Scholar 

  4. Ouyang, H., Mottershead, J.E.: Friction-induced parametric resonances in discs: effect of a negative friction-velocity relationship. J. Sound Vib. 209(2), 251–264 (1998)

    Article  Google Scholar 

  5. Halminen, O., Aceituno, J.F., Escalona, J.L., Sopanen, J., Mikkola, A.: Models for dynamic analysis of backup ball bearings of an AMB-system. Mech. Syst. Signal Process. 95, 324–344 (2017)

    Article  Google Scholar 

  6. Besselink, B., Vromen, T., Kremers, N., Wouw, N.V.D.: Analysis and control of stick-slip oscillations in drilling systems. IEEE Trans. Control Syst. Technol. 24(5), 1582–1593 (2016)

    Article  Google Scholar 

  7. Shang, Z., Jiang, J., Hong, L.: The global responses characteristics of a rotor/stator rubbing system with dry friction effects. J. Sound Vib. 330(10), 2150–2160 (2011)

    Article  Google Scholar 

  8. Awrejcewicz, J., Olejnik, P.: Analysis of dynamic systems with various friction laws. Appl. Mech. Rev. 58(6), 389–411 (2005)

    Article  Google Scholar 

  9. Pennestrì, E., Rossi, V., Salvini, P., Valentini, P.P.: Review and comparison of dry friction force models. Nonlinear Dyn. 83(4), 1785–1801 (2016)

    Article  MATH  Google Scholar 

  10. Mohammed, A.A.Y., Rahim, I.A.: Analysing the disc brake squeal: review and summary. Int. J. Sci. Technol. Res. 2(4), 60–72 (2013)

    Google Scholar 

  11. Giannini, O., Akay, A., Massi, F.: Experimental analysis of brake squeal noise on a laboratory brake setup. J. Sound Vib. 292, 1–20 (2006)

    Article  Google Scholar 

  12. Veraszto, Z., Stepan, G.: Nonlinear dynamics of hardware-in-the-loop experiments on stick-slip phenomena. Int. J. Non-Linear Mech. 94, 380–391 (2017)

    Article  Google Scholar 

  13. Nakano, K., Maegawa, S.: Occurrence limit of stick-slip: dimensionless analysis for fundamental design of robust-stable systems. Lubr. Sci. 22(1), 1–18 (2010)

    Article  Google Scholar 

  14. Won, H.I., Chung, J.: Stick-slip vibration of an oscillator with damping. Nonlinear Dyn. 86, 257–267 (2016)

    Article  Google Scholar 

  15. Luo, A.C.J., Gegg, B.C.: Stick and non-stick periodic motions in periodically forced oscillators with dry friction. J. Sound Vib. 291, 132–168 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Q.H., Chen, Y.M., Qin, Z.Y.: Existence of stick-slip periodic solutions in a dry friction oscillator. Chin. Phys. Lett. 28(3), 030502 (2011)

    Article  Google Scholar 

  17. Csernák, G., Stépán, G., Shaw, S.W.: Sub-harmonic resonant solutions of a harmonically excited dry friction oscillator. Nonlinear Dyn. 50, 93–109 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Abdo, J., Abouelsoud, A.A.: Analytical approach to estimate amplitude of stick-slip oscillations. J. Theor. Appl. Mech. 49(4), 971–986 (2011)

    Google Scholar 

  19. Devarajan, K., Bipin, B.: Analytical approximations for stick slip amplitudes and frequency of duffing oscillator. J. Comput. Nonlinear Dyn. 12, 044501 (2017)

    Article  Google Scholar 

  20. Awrejcewicz, J., Sendkowski, D.: Stick-slip chaos detection in coupled oscillators with friction. Int. J. Solids Struct. 42, 5669–5682 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pontes, B.R., Oliveira, V.A.: On stick-slip homoclinic chaos and bifurcations in a mechanical system with dry friction. Int. J. Bifurc. Chaos 11(7), 2019–2029 (2001)

    Article  Google Scholar 

  22. Licskó, G., Csernák, G.: On the chaotic behaviour of a simple dry-friction oscillator. Math. Comput. Simul. 95, 55–62 (2013)

    Article  MathSciNet  Google Scholar 

  23. Mohammed, A.A.Y., Rahim, I.A.: Analysing the disc brake squeal: review and summary. Int. J. Sci. Technol. Res. 2(4), 60–72 (2013)

    Google Scholar 

  24. Carison, J.M., Langer, J.S.: Mechanical model of an earthquake fault. Phys. Rev. A 40(11), 6470–6484 (1989)

    Article  MathSciNet  Google Scholar 

  25. Sergienko, O.V., Macayeal, D.R., Bindschadler, R.A.: stick-slip behavior of ice streams: modeling investigations. Ann. Glaciol. 50(52), 87–94 (2009)

    Article  Google Scholar 

  26. Li, Z.X., Cao, Q.J., Léger, A.: Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction. Chin. Phys. B 25(1), 010502 (2016)

    Article  Google Scholar 

  27. Olejnik, P., Awrejcewicz, J.: An approximation method for the numerical solution of planar discontinuous dynamical systems with stick-slip friction. Appl. Math. Sci. 8(145), 7213–7238 (2014)

    Google Scholar 

  28. Cao, Q.J., Wiercigroch, M., Pavlovskaia, E.E., Thompson, J.M.T., Grebogi, C.: Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev. E 74, 046218 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cao, Q.J., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C., Thompson, J.M.T.: The limit case response of the archetypal oscillator for smooth and discontinuous dynamics. Int. J. Non-Linear Mech. 43, 462–473 (2008)

  30. Cao, Q.J., Wiercigroch, M., Pavlovskaia, E.E., Thompson, J.M.T., Grebogi, C.: Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 366(1865), 635–652 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Tian, R.L., Cao, Q.J., Yang, S.P.: The codimension-two bifurcation for the recent proposed SD oscillator. Nonlinear Dyn. 59, 19–27 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, Z.X., Cao, Q.J., Léger, A.: Threshold of multiple stick-slip chaos for an archetypal self-excited SD oscillator driven by moving belt friction. Int. J. Bifurc. Chaos 27(1), 1750009 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, Z.X., Cao, Q.J., Léger, A.: The complicated bifurcation of an archetypal self-excited SD oscillator with dry friction. Nonlinear Dyn. 89(1), 91–106 (2017)

    Article  Google Scholar 

  34. Kluge, P.N.V., Kenmoé, G.D., Kofané, T.C.: Application to nonlinear mechanical systems with dry friction: hard bifurcation in SD oscillator. SN Appl. Sci. 1, 1140 (2019)

    Article  Google Scholar 

  35. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Acadamic, Dordrecht (1988)

    Book  MATH  Google Scholar 

  36. Andreaus, U., Casini, P.: Dynamics of friction oscillators excited by a moving base and/or driving force. J. Sound Vib. 245(4), 685–699 (2001)

    Article  Google Scholar 

  37. Jin, X.L., Xu, H., Wang, Y., Huang, Z.L.: Approximately analysical procedure to evaluate random stick-slip vibration of Duffing system including dry friction. J. Sound Vib. 443, 520–536 (2019)

    Article  Google Scholar 

  38. Szalai, R., Osinga, H.M.: Invariant polygons in systems with grazing-sliding. Chaos 18(2), 023121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Olejnik, P., Awrejcewicz, J.: Application of Hénon method in numerical estimation of the stick-slip transitions existing in Filippov-type discontinuous dynamical systems with dry friction. Nonlinear Dyn. 73, 723–736 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 11732006 and 11872253), Natural Science Foundation of Hebei Province (Grant No. A2019402043) and Research Project of Science and Technology for Hebei Province Higher Education Institutions (Grant No. QN2019064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixin Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Cao, Q. & Nie, Z. Stick-slip vibrations of a self-excited SD oscillator with Coulomb friction. Nonlinear Dyn 102, 1419–1435 (2020). https://doi.org/10.1007/s11071-020-06009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06009-3

Keywords

Navigation