Skip to main content
Log in

Stick–Slip Motion and Static Friction in a Nonlinear Deformable Substrate Potential

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The dynamical behaviour caused by dry friction is studied in a model of two spring-blocks system pulled with constant velocity over a nonsinusoidal substrate potential with variable shape. We focus our attention on a class of parameterized Remoissenet–Peyrard potential, whose shape can be varied as a function of a parameter, and which has the sine-wave shape as a particular case. The dynamics of the model is carefully studied both numerically and analytically. For a good selection of the parameter systems, the motion of each block involves periodic stick–slip, intermittent and sliding motions. We show that our strategy helps in obtaining an insight into the time of the beginning of the slip (slip prediction) and the time of the stop (time prediction). The analytical results obtained for the static friction are in good agreement with numerical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bowden, F.P., Tabor, D.: Friction and Lubrication. Oxford University Press, Oxford (1954)

    Google Scholar 

  2. Rabinowicz, E.: Friction and Wear of Materials. Wiley, New York (1965)

    Google Scholar 

  3. Landman, U., Luedtke, W.D., Burnham, N.A., Colton, R.J.: Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture. Science 248, 454–461 (1990)

    Article  CAS  Google Scholar 

  4. Braun, O.M., Peyrard, M.: Modeling friction on a mesoscale: master equation for the earthquake-like model. Phys. Rev. Lett. 100, 125501–125505 (2008)

    Article  CAS  Google Scholar 

  5. Hammerberg, J.E., Holian, B.L., Roder, J., Bishop, A.R., Zhou, S.J.: Nonlinear dynamics and the problem of slip at material interfaces. Physica D 123, 330–340 (1998)

    Article  CAS  Google Scholar 

  6. Palacio, M.L.B., Bhushan, B.: Normal and lateral force calibration technique for AFM Cantilevers. Crit. Rev. Solid State Mater. Sci. 35, 73–104 (2010)

    Article  CAS  Google Scholar 

  7. Bhushan, B., Israelachvilli, J.N., Landman, U.: Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995)

    Article  CAS  Google Scholar 

  8. Persson, B.N.J.: Sliding Friction: Physical Properties and Applications. Springer, Berlin (1998)

    Google Scholar 

  9. Scholz, C.H.: Earthquakes and frictions laws. Nature 391, 37–42 (1998)

    Article  CAS  Google Scholar 

  10. Conley, W.G., Krousgrill, C.M., Raman, A.: Stick–slip motions in the friction force microscope: effects of tip compliance. Tribol. Lett. 29, 23–32 (2008)

    Article  Google Scholar 

  11. Moerloze, K.D., Al-Bender, F., Bussel, H.V.: A generalised asperity-based friction model. Tribol. Lett. 40, 113–130 (2010)

    Article  Google Scholar 

  12. Maveyraud, C., Benz, W., Sornette, A., Sornette, D.: Solid friction at high sliding velocities: an explicit 3D dynamical smoothed particle hydrodynamics approach. J. Geophys. Res. 104, 28769–28788 (1999)

    Article  Google Scholar 

  13. Zaloj, V., Urbakh, M., Klafter, J.: Modifying friction by manipulating normal response to lateral motion. Phys. Rev. Lett. 82, 4823–4826 (1999)

    Article  CAS  Google Scholar 

  14. Braun, O.M., Röder, J.: Transition from stick–slip to smooth sliding: an earthquakelike model. Phys. Rev. Lett. 88, 096102–096106 (2002)

    Article  CAS  Google Scholar 

  15. Djuidjé, K.G., Kofané, T.C.: Frictional stick–slip dynamics in a nonsinusoidal Remoissenet–Peyrard potential. Eur. Phys. J. B 55, 347–353 (2007)

    Article  Google Scholar 

  16. Djuidjé, K.G., Kenfack, J.A., Kofané, T.C.: Nonlinear spring model for frictional stick–slip motion. Eur. Phys. J. B 70, 353–361 (2009)

    Article  Google Scholar 

  17. Helman, J.S., Baltensperger, W., Holyst, J.A.: Simple model for dry friction. Phys. Rev. B 49, 3831–3838 (1994)

    Article  Google Scholar 

  18. Rozman, M.G., Urbakh, M., Klafter, J.: Stick–slip dynamics of interfacial friction. Physica A. 249, 184–189 (1998)

    Google Scholar 

  19. Vanossi, A., Bishop, A.R., Bortolani, V.: Role of substrate geometry in sliding friction. Nanotechnology 15, 790–794 (2004)

    Article  Google Scholar 

  20. Castelli, I.E., Manini, N., Capozza, R., Vanossi, A., Santoro, G.E., Tosatti, E.: Role of transverse displacements for a quantized-velocity state of a lubricant. J. Phys. Condens. Matter 20, 374005 (2008)

    Article  Google Scholar 

  21. Djuidjé, K.G., Kenfack, J.A., Kofané, T.C.: Stick–slip motion in a driven two-nonsinusoidal Remoissenet–Peyrard potential. Physica D 191, 31–48 (2004)

    Article  Google Scholar 

  22. Djuidjé, K.G., Kofané, T.C.: Frictional stick–slip dynamics in a deformable potential. In: Bhushan, B. (ed.) Scanning Probe Microscopy in Nanoscience and Nanotechnology, vol. 2, pp. 533–549. Springer-Verlag, Heidelberg (2011)

    Google Scholar 

  23. Remoissenet, M., Peyrard, M.: Solitonlike excitations in a one-dimensional atomic chain with a nonlinear deformable substrate potential. Phys. Rev. B 26, 2886–2899 (1982)

    Article  Google Scholar 

  24. Remoissenet, M., Peyrard, M.: Soliton dynamics in new models with parametrized periodic double-well and asymmetric substrate potentials. Phys. Rev. B 29, 3153–3166 (1984)

    Article  Google Scholar 

  25. Braun, O.M., Kivshar, Y.S., Zelenskaya, I.I.: Kinks in the Frenkel–Kontorova model with long-range interparticle interactions. Phys. Rev. B 41, 7118–7138 (1990)

    Article  CAS  Google Scholar 

  26. Rozman, M.G., Urbakh, M., Klafter, J.: Origin of stick–slip motion in a driven two-wave potential. Phys. Rev. E 54, 6485–6494 (1996)

    Article  CAS  Google Scholar 

  27. Liu, Y., Leung, K.M., Hen-young, N., Lau, W.M., Yang, J.: A new AFM nanotribology method using a T-shape cantilever with an off-axis tip for friction coefficient measurement with minimized Abbé error. Tribol. Lett. 41, 313–318 (2011)

    Google Scholar 

  28. Rakotondrake, M., Haddab, Y., Lutz, P.: Development, modelling and control of a micro/nano positioning 2DoF stick–slip device. IEEE ASME Trans Mechatron 14, 733–745 (2009)

    Article  Google Scholar 

  29. Johnson, K.L., Woodhouse, J.: Stick–slip motion in the atomic force microscope. Tribol. Lett. 5, 155–160 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr Germaine Djuidjé Kenmoé Would like to thank Dr Nicola Manini (Department of Physics, University of Milan, Italy) for illuminating discussions. She also thanks the organizers of Joint ICTP/FANAS Conference on Trends in Nanotribology (2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Djuidjé Kenmoé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motchongom-Tingue, M., Djuidjé Kenmoé, G. & Kofané, T.C. Stick–Slip Motion and Static Friction in a Nonlinear Deformable Substrate Potential. Tribol Lett 43, 65–72 (2011). https://doi.org/10.1007/s11249-011-9786-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9786-6

Keywords

Navigation