Skip to main content
Log in

On the fundamental linear fractional order differential equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with the rational function approximation of the irrational transfer function \(G(s) = \frac{X(s)}{E(s)} = \frac{1}{[(\tau _{0}s)^{2m} + 2\zeta (\tau _{0}s)^{m} + 1]}\) of the fundamental linear fractional order differential equation \((\tau_{0})^{2m}\frac{d^{2m}x(t)}{dt^{2m}} + 2\zeta(\tau_{0})^{m}\frac{d^{m}x(t)}{dt^{m}} + x(t) = e(t)\), for 0<m<1 and 0<ζ<1. An approximation method by a rational function, in a given frequency band, is presented and the impulse and the step responses of this fractional order system are derived. Illustrative examples are also presented to show the exactitude and the usefulness of the approximation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oustaloup, A.: Systèmes Asservis Linéaires d’Ordre Fractionnaire: Théorie et Pratique. Masson, Paris (1983)

    Google Scholar 

  2. Petras, I., Podlubny, I., O’Leary, P., Dorcak, L., Vinagre, B.M.: Analogue realization of fractional order controllers. Fakulta Berg, TU Kosice (2002)

  3. Hilfer, R. (ed.): Applications of Calculus in Physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  4. Sabatier, J., et al. (eds.): Advances in Fractional Calculus: Theoretical Development and Applications in Physics and Engineering. Springer, Dordrecht (2007)

    Google Scholar 

  5. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  6. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  7. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  8. Aoun, M., Malti, R., Levron, F., Oustaloup, A.: Numerical simulations of fractional systems: an overview of existing methods and improvements. Nonlinear Dyn. 38, 117–131 (2004)

    Article  MATH  Google Scholar 

  9. Charef, A.: Modeling and analog realization of the fundamental linear fractional order differential equation. Nonlinear Dyn. 46, 195–210 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diethelm, K., Walz, G.: Numerical solution of fractional order differential equations by extrapolation. Numer. Algorithms 16, 231–253 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hartley, T.T., Lorenzo, C.F.: A solution of the fundamental linear fractional order differential equation. NASA TP-1998-208693, December 1998

  12. Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y.: Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194, 743–773 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Momani, S., Al-Khaled, K.: Numerical solutions for systems of fractional differential equations by the decomposition method. Appl. Math. Comput. 162, 1351–1365 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kumar, P., Agrawal, O.P.: An approximate method for numerical solution of fractional differential equations. Signal Process. 86, 2602–2610 (2006)

    Article  MATH  Google Scholar 

  15. Momani, S., Odibat, Z.: Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fractals 31, 1248–1255 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Arikoglu, A., Ozkol, I.: Solution of fractional differential equations by using differential transform method. Chaos Solitons Fractals 34, 1473–1481 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bonilla, B., Rivero, M., Trujillo, J.J.: On systems of linear fractional differential equations with constant coefficients. Appl. Math. Comput. 187, 68–78 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cole, K.S., Cole, R.H.: Dispersion and absorption in dielectrics, alternation current characterization. J. Chem. Phys. 9 (1941)

  19. MacDonald, J.R.: Impedance Spectroscopy. Wiley, New York (1987)

    Google Scholar 

  20. Matignon, D.: Stability results for fractional differential equation with application to control processing. In: Proceedings of the Symposium on Control, Optimization and Supervision, CESA’96, Lille, France, pp. 963–968 (1996)

    Google Scholar 

  21. Malti, R., Moreau, X., Khemane, F.: Resonance of fractional transfer functions of the second kind. In: Proceedings of IFAC Workshop on Fractional Differentiation and its Applications, Ankara, Turkey, 5–7 November 2008 (2008)

    Google Scholar 

  22. Kuo, B.C.: Automatic Control Systems. Prentice-Hall, Englewood Cliffs (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelfatah Charef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charef, A., Nezzari, H. On the fundamental linear fractional order differential equation. Nonlinear Dyn 65, 335–348 (2011). https://doi.org/10.1007/s11071-010-9895-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9895-z

Keywords

Navigation