Skip to main content
Log in

Numerical Simulations of Fractional Systems: An Overview of Existing Methods and Improvements

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An overview of the main simulation methods of fractional systems is presented. Based on Oustaloup’s recursive poles and zeros approximation of a fractional integrator in a frequency band, some improvements are proposed. They take into account boundary effects around outer frequency limits and simplify the synthesis of a rational approximation by eliminating arbitrarily chosen parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ichise, M., Nagayanagi, Y., and Kojima, T., ‘An analog simulation of non integer order transfer functions for analysis of electrode processes’, Journal of Electroanalytical Chemistry Interfacial Electrochemistry33, 1971, 253.

    Google Scholar 

  2. Darling, R. and Newman J., ‘On the short behavior of porous intercalation electrodes’, Journal of Electrochemical Society144(9), 1997, 3057–3063.

    Google Scholar 

  3. Battaglia, J. L., Cois, O., Puigsegur, L., and Oustaloup, A., ‘Solving an inverse heat conduction problem using a non-integer identified model’, International Journal of Heat and Mass Transfer44(14), 2001, 2671–2680.

    Google Scholar 

  4. Cois, O., ‘Systèmes linéaires non entiers et identification par modèle non entier: application en thermique’, {Ph.D. Thesis}, University of Bordeaux I, France, 2003.

  5. Bode, H. W., Network Analysis and Feedback Amplifiers Design, Nostrand, New York, 1945.

    Google Scholar 

  6. Tustin, A., Allanson, J. T., Layton, J. M., and Jakeways, R. J., ‘The design of systems for automatic control of the position of massive object’, in Proceedings of Institution of Electrical Engineers, 1958, 105, Part C, Suppl. 1, pp. 1–57.

  7. Oustaloup, A., Systèmes asservis linéaires d’ordre fractionnaire, Masson, Paris, 1983.

    Google Scholar 

  8. Al-Alaoui, M. A., ‘Novel IIR differentiator from the Simpson Integration rule’, IEEE Transactions on Circuits and Systems I. Fundamental Theory and Applications41(2), 1994, 186–187.

    Google Scholar 

  9. Vinagre, B. M., Podlubny, I., Hernandez, A., and Feliu, V., ‘Some approximations of fractional order operators used in control theory and applications’, Fractional Calculus & Applied Analysis3(3), 2000, pp. 231–248.

    Google Scholar 

  10. Petras, I., Podlubny, I., O’Leary, P., and Dorcak, L., ‘Analogue fractional-order controllers: Realization, tuning and implementation’, in Proceedings of the ICCC’2001, Krynica, Poland, 2001, pp. 9–14.

  11. Chen, Y. Q. and Kevin, L. Moore, L., ‘Discretization schemes for fractional-order differentiators and integrators’, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications49(3), 2002, 363–367.

    Google Scholar 

  12. Chen, Y. Q., Vinagre, B., and Podlubny, I., ‘A new discretization method for fractional order differentiators via continued fraction expansion’, in ASME First Symposium on Fractional Derivatives and Their Applications, International Design Engineering Technical Conferences, Chicago, Illinois, 2003.

  13. Podlubny, I., Fractional Differential Equations. Mathematics in Science and Engineering, Vol. III. Academic Press, San Diego, California, 1999.

    Google Scholar 

  14. Podlubny, I., Petras, I., Vinagre, B. M., O’Leary, P., and Dorcak, L., ‘Analogue realizations of fractional-order controllers’, Nonlinear Dynamics29(1–4), 2002, 281–296.

    Google Scholar 

  15. Petras, I., Podlubny, I., O’Leary, P., Dorcak, L., and Vinagre, B., Analogue Realization of Fractional Order Controllers, Technical University of Kosice, Kosice, Slovak Republic, 2002, p. 84.

  16. Samko, S. G., Kilbas, A. A., and Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam, 1993.

    Google Scholar 

  17. Miller, K.S. and Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York, 1993.

    Google Scholar 

  18. Oldham, K. B. and Spanier, J., The Fractional Calculus. Academic Press, New York, 1974.

    Google Scholar 

  19. Matignon D., ‘Représentations en variables d’état de modèles de guides d’ondes avec dérivation fractionnaire’, {Ph.D. Thesis}, Université de Paris-Sud, Orsay, France, 1994.

  20. Oustaloup, A., La dérivation non Entière: Théorie, Synthèse et Applications, Hermès, Paris, 1995.

    Google Scholar 

  21. Matignon, D., ‘Stability properties for generalized fractional differential systems’, in ESAIM: Proceedings, Vol. 5, Systèmes Différentiels Fractionnaires – Modèles, Méthodes et Applications, Paris, 1998.

  22. Tabak, D., ‘Digitalization of control systems’, Computer Aided Design32, 1971, 13–18.

    Google Scholar 

  23. Lin, J., ‘Modélisation et identification de systèmes d’ordre non entier’, {Thèse de Doctorat,} Université de Poitiers, France, 2001.

  24. Oustaloup, A., Levron, F., Nanot, F., and Mathieu, B., ‘Frequency-band complex non integer differentiator: Characterization and synthesis’, IEEE Transaction on Circuits and Systems47(1), 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Aoun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoun, M., Malti, R., Levron, F. et al. Numerical Simulations of Fractional Systems: An Overview of Existing Methods and Improvements. Nonlinear Dyn 38, 117–131 (2004). https://doi.org/10.1007/s11071-004-3750-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-004-3750-z

Key words:

Navigation