Skip to main content
Log in

Chaotic behavior of a class of discontinuous dynamical systems of fractional-order

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the chaos persistence in a class of discontinuous dynamical systems of fractional-order is analyzed. To that end, the initial value problem is first transformed, by using the Filippov regularization (Filippov in Differential Equations with Discontinuous Right-Hand Sides, 1988), into a set-valued problem of fractional-order, then by Cellina’s approximate selection theorem (Aubin and Cellina in Differential Inclusions Set-valued Maps and Viability Theory, 1984; Aubin and Frankowska in Set-valued Analysis, 1990). The problem is approximated into a single-valued fractional-order problem, which is numerically solved by using a numerical scheme proposed by Diethelm et al. (Nonlinear Dyn. 29:3–22, 2002). Two typical examples of systems belonging to this class are analyzed and simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic, Dordrecht (1988)

    MATH  Google Scholar 

  2. Aubin, J.-P., Cellina, A.: Differential Inclusions Set-valued Maps and Viability Theory. Springer, Berlin (1984)

    MATH  Google Scholar 

  3. Aubin, J.-P., Frankowska, H.: Set-valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  4. Diethelm, K., Ford, N.J., Freed, A.D.: Predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Pergamon, Oxford (1966)

    MATH  Google Scholar 

  6. Buhite, J.L., Owen, D.R.: An ordinary differential equation from the theory of plasticity. Arch. Ration. Mech. Anal. 71, 357–383 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Clarke, F.H.: Optimization and Non-smooth Analysis. Wiley, New York (1983)

    Google Scholar 

  8. Deimling, K.: Multivalued differential equations and dry friction problems. In: Fink, A.M., Miller, R.K., Kliemann, W. (eds.) Proc. Conf. Delay and Differential Equations, pp. 99–106. World Scientific, Singapore (1992)

    Google Scholar 

  9. Schilling, K.: An algorithm to solve boundary value problem for differential equations and applications in optimal control. Numer. Funct. Anal. Optim. 10, 733–764 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wiercigroch, M., de Kraker, B.: Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  11. Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 14, 304–311 (1991)

    Article  Google Scholar 

  12. Nakagava, M., Sorimachi, K.: Basic characteristics of a fractance device. IEICE Trans. Fundam. Electron. E75-A(12), 1814–1818 (1992)

    Google Scholar 

  13. Oustaloup, A.: La Derivation Non Entiere: Theorie, Synthese et Applications. Hermes, Paris (1995)

    MATH  Google Scholar 

  14. Sun, H.H., Abdelwahad, A.A., Onaral, B.: Linear approximation of transfer function with a pole of fractional order. IEEE Trans. Autom. Control 29, 441–444 (1984)

    Article  MATH  Google Scholar 

  15. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  16. Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of noninteger order transfer functions for analysis of electrode process. J. Electroanal. Chem. 33, 253–265 (1971)

    Google Scholar 

  17. Podlubny, I., Petráš, I., Vinagre, B.M., O’Leary, P., Dorcák, L.: Analogue realization of fractional-order controllers. Nonlinear Dyn. 29(1–4), 281–296 (2002)

    Article  MATH  Google Scholar 

  18. Laskin, N.: Fractional market dynamics. Physica A 287, 482–492 (2000)

    Article  MathSciNet  Google Scholar 

  19. Kusnezov, D., Bulgac, A., Dang, G.D.: Quantum Levy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136–1139 (1999)

    Article  Google Scholar 

  20. Taubert, K.: Converging multistep methods for initial value problems involving multivalued maps. Computing 27, 123–136 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dontchev, A., Lempio, F.: Difference methods for differential inclusions. SIAM Rev. 34, 263–294 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kastner-Maresch, A., Lempio, F.: Difference methods with selection strategies for differential inclusions. Numer. Funct. Anal. Optim. 14, 555–572 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Danca, M.-F., Codreanu, S.: On a possible approximation of discontinuous dynamical systems. Chaos Solitons Fractals 13, 681–691 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1–6 (1997)

    MATH  MathSciNet  Google Scholar 

  26. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  27. Shokooh, A., Suarez, L.E.: A comparison of numerical methods applied to a fractional model of damping materials. J. Vib. Control 5, 331–354 (1999)

    Article  Google Scholar 

  28. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993)

    MATH  Google Scholar 

  29. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  30. Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractal system as represented by singularity function. IEEE Trans. Automat. Control 37, 1465–1470 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  31. Petráš, I.: Chaos in the fractional-order Volta’s system: modeling and simulation. Nonlinear Dyn. 57(1–2), 157–170 (2009)

    Article  MATH  Google Scholar 

  32. Ahmad, W.M., Sprott, J.C.: Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16, 339–351 (2003)

    Article  MATH  Google Scholar 

  33. Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE T. Circuits-I 42(8), 485–490 (1995)

    Article  Google Scholar 

  34. Arena, P., Caponetto, R., Fortuna, L., Porto, D.: Chaos in a fractional order Duffing system. In: Proceedings ECCTD, Budapest, September, pp. 1259–1262 (1997)

  35. Wu, X.-J., Shen, S.-L.: Chaos in the fractional-order Lorenz system. Int. J. Comput. Math. 86(7), 1274–1282 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lu, J.G.: Chaotic dynamics of the fractional-order Lü system and its synchronization. Phys. Lett. A 354, 305–311 (2006)

    Article  Google Scholar 

  37. Aziz-Alaoui, M.A., Chen, G.: Asymptotic analysis of a new piecewise-linear chaotic system. Int. J. Bifurc. Chaos 12(1), 147–157 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. Sprott, J.C.: A new class of chaotic circuit. Phys. Lett. A 266, 19–23 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius-F. Danca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danca, MF. Chaotic behavior of a class of discontinuous dynamical systems of fractional-order. Nonlinear Dyn 60, 525–534 (2010). https://doi.org/10.1007/s11071-009-9612-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9612-y

Navigation