Skip to main content
Log in

Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by the hyperbolic perturbation method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The hyperbolic perturbation method is applied to determining the homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators of the form \(\ddot{x}+c_{1}x+c_{3}x^{3}=\varepsilon f(\mu,x,\dot{x})\) , in which the hyperbolic functions are employed instead of the periodic functions in the usual perturbation method. The generalized Liénard oscillator with \(f(\mu,x,\dot{x})=(\mu -\mu_{1}x^{2}-\mu_{2}\dot{x}^{2})\dot{x}\) is studied in detail. Comparisons with the numerical simulations obtained by using R–K method are made to show the efficacy and accuracy of the present method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  2. Mickens, R.E.: Nonlinear Oscillations. Cambridge University Press, New York (1981)

    MATH  Google Scholar 

  3. Cheung, Y.K., Chen, S.H., Lau, S.L.: A modified Lindstedt–Poincaré method for certain strongly nonlinear oscillators. J. Non-Linear Mech. 26(3/4), 367–378 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, S.H., Cheung, Y.K.: A modified Lindstedt–Poincare method for a strongly non-linear two degree-of-freedom system. J. Sound Vib. 193(4), 751–762 (1996)

    Article  MathSciNet  Google Scholar 

  5. Burton, T.D., Rahman, Z.: On the multi-scale analysis of strongly non-linear forced oscillators. J. Non-Linear Mech. 21(2), 135–146 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ottoy, J.P.: A perturbation method for a set of purely non-linear differential equations. Int. J. Control 30(4), 587–595 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dai, S.Q.: Asymptotic analysis of strongly non-linear oscillator. Appl. Math. Mech. (Engl. Ed.) 6, 409–415 (1985)

    Article  MATH  Google Scholar 

  8. Barkham, P.G.D., Souback, A.C.: An extension to the method of Kryloff and Bogoliubov. Int. J. Control 10, 337–392 (1969)

    Article  Google Scholar 

  9. Yuste, S.B., Bejarano, J.D.: Extension and improvement to the Krylov–Bogoliubov methods using elliptic functions. Int. J. Control 49, 1127–1141 (1989)

    MATH  Google Scholar 

  10. Coppola, V.T., Rand, R.H.: Averaging using elliptic function: approximation of limit cycles. Acta Mech. 81, 125–142 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Roy, R.V.: Averaging method for strongly non-linear oscillators with periodic excitations. J. Non-Linear Mech. 29, 737–753 (1994)

    Article  MATH  Google Scholar 

  12. Chen, S.H., Cheung, Y.K.: An elliptic Lindstedt–Poincaré method for certain strongly non-linear oscillators. Nonlinear Dyn. 12, 199–213 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, S.H., Yang, X.M., Cheung, Y.K.: Periodic solutions of strongly quadratic non-linear oscillators by the elliptic Lindstedt–Poincaré method. J. Sound Vib. 227, 1109–1118 (1999)

    Article  MathSciNet  Google Scholar 

  14. Yang, C.H., Zhu, S.M., Chen, S.H.: A modified elliptic Lindstedt–Poincaré method for certain strongly non-linear oscillators. J. Sound Vib. 273, 921–932 (2004)

    Article  MathSciNet  Google Scholar 

  15. Chen, S.H., Cheung, Y.K.: An elliptic perturbation method for certain strongly non-linear oscillators. J. Sound Vib. 192, 453–464 (1996)

    Article  MathSciNet  Google Scholar 

  16. Chen, S.H., Yang, X.M., Cheung, Y.K.: Periodic solutions of strongly quadratic non-linear oscillators by the elliptic perturbation method. J. Sound Vib. 212, 771–780 (1998)

    Article  MathSciNet  Google Scholar 

  17. Otty, J.P.: Study of a non-linear perturbed oscillator. Int. J. Control 32(3), 475–487 (1980)

    Article  Google Scholar 

  18. Lakrad, F., Belhaq, M.: Periodic solutions of strongly non-linear oscillators by the multiple scales method. J. Sound Vib. 258, 677–700 (2002)

    Article  MathSciNet  Google Scholar 

  19. Xu, Z., Cheung, Y.K.: Averaging method using generalized harmonic functions for strongly non-linear oscillators. J. Sound Vib. 174(4), 563–576 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Xu, Z.: Non-linear time transformation method for strongly nonlinear oscillation systems. Acta Mech. Sin. (Engl. Ed.) 8(3), 279–288 (1992)

    MATH  Google Scholar 

  21. Xu, Z., Zhang, L.: Asymptotic method for analysis of nonlinear systems with two parameters. Acta Math. Sci. (Engl. Ed.) 6(4), 453–462 (1986)

    MATH  Google Scholar 

  22. Xu, Z., Cheung, Y.K.: Non-linear scales method for strongly non-linear oscillators. Nonlinear Dyn. 7, 285–289 (1995)

    Article  MathSciNet  Google Scholar 

  23. Vakakis, A.F.: Exponentially small splittings of manifolds in a rapidly forced Duffing system, Letter to the editor. J. Sound Vib. 170, 119–129 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Vakakis, A.F., Azeez, M.F.A.: Analytic Approximation of the homoclinic orbits of the Lorenz system at σ=10, b=8/3 and ρ=13.926…. Nonlinear Dyn. 15, 245–257 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Xu, Z., Chan, H.S.Y., Chung, K.W.: Separatrices and limit cycles of strongly nonlinear oscillators by the perturbation-incremental method. Nonlinear Dyn. 11, 213–233 (1996)

    Article  MathSciNet  Google Scholar 

  26. Chan, H.S.Y., Chung, K.W., Xu, Z.: Stability and bifurcations of limit cycles by the perturbation-incremental method. J. Sound Vib. 206(4), 589–604 (1997)

    Article  MathSciNet  Google Scholar 

  27. Chen, S.H., Chan, J.K.H., Leung, A.Y.T.: A perturbation method for the calculation of semi-stable limit cycles of strongly nonlinear oscillators. Commun. Numer. Methods Eng. 16, 301–313 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Belhaq, M., Lakrad, F.: Prediction of homoclinic bifurcation: the elliptic averaging method. Chaos Solitons Fractals 11, 2251–2258 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Belhaq, M., Fiedler, B., Lakrad, F.: Homoclinic connections in strongly self-excited nonlinear oscillators: the Melnikov function and the elliptic Lindstedt–Poincaré method. Nonlinear Dyn. 23, 67–86 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mikhlin, Yu.V.: Analytical construction of homoclinic orbits of two- and three-dimensional dynamical systems. J. Sound Vib. 230(5), 971–983 (2000)

    Article  MathSciNet  Google Scholar 

  31. Mikhlin, Yu.V., Manucharyan, G.V.: Construction of homoclinic and heteroclinic trajectories in mechanical systems with several equilibrium positions. Chaos Solitons Fractals 16, 299–309 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Chen, S.H., Chen, Y.Y., Sze, K.Y.: A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators. J. Sound Vib. 322(1–2), 381–392 (2009)

    Article  Google Scholar 

  33. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  34. Merkin, J.H., Needham, D.J.: On infinite-period bifurcations with an application to roll waves. Acta Mech. 60, 1–16 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y.Y., Chen, S.H. Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by the hyperbolic perturbation method. Nonlinear Dyn 58, 417–429 (2009). https://doi.org/10.1007/s11071-009-9489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9489-9

Keywords

Navigation