Skip to main content
Log in

Multiple Homoclinics for Nonperiodic Damped Systems with Superlinear Terms

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

We study the following second-order differential system

$$\begin{aligned} -\ddot{u}(t)-M\dot{u}(t)+L(t)u(t)=H_u(t,u(t)),\quad t\in \mathbb {R}, \end{aligned}$$
(0.1)

which can be regarded as a second-order Hamiltonian system with a damped term. Here, the nonlinearity H(tu) is superquadratic as \(|u|\rightarrow \infty \). We do not need any periodic conditions, and we obtain infinitely many nontrivial homoclinic orbits of this system by variational methods. Our result improves and extends the corresponding results existed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Coti Zelati, V.: Multiple homoclinic orbits for a class of conservative systems. Rend. Semin. Mat. Univ. Padova 89, 177–194 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Benci, V., Rabinowitz, P.H.: Critical point theorems for indefinite functionals. Invent. Math. 52, 241–273 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, G., Ma, S.: Periodic solutions for Hamiltonian systems without Ambrosetti–Rabinowitz condition and spectrum. J. Math. Anal. Appl. 379, 842–851 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, G.: Non-periodic damped vibration systems with sublinear terms at infinity: infinitely many homoclinic orbits. Nonlinear Anal. TMA 92, 168–176 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, G.: Nonperiodic damped vibration systems with asymptotically quadratic terms at infinity: infinitely many homoclinic orbits. Abstr. Appl. Anal. 2013, 937128 (2013)

    MathSciNet  Google Scholar 

  6. Costa, D.G., Magalhães, C.A.: A variational approach to subquadratic perturbations of elliptic systems. J. Differ. Equ. 111, 103–122 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Costa, D.G., Tehrani, H.: On a class of singular second-order Hamiltonian systems with infinitely many homoclinic solutions. J. Math. Anal. Appl. 412, 200–211 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, Y.: Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems. Nonlinear Anal. 25, 1095–1113 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Izydorek, M., Janczewska, J.: Homoclinic solutions for a class of second order Hamiltonian systems. J. Differ. Equ. 219, 375–389 (2005)

    Article  MATH  Google Scholar 

  10. Kim, Y.: Existence of periodic solutions for planar Hamiltonian systems at resonance. J. Korean Math. Soc. 48, 1143–1152 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences, vol. 74. Springer, New York (1989)

    Book  MATH  Google Scholar 

  12. Omana, W., Willem, M.: Homoclinic orbits for a class of Hamiltonian systems. Differ. Integral Equ. 5, 1115–1120 (1992)

    MathSciNet  MATH  Google Scholar 

  13. Paturel, E.: Multiple homoclinic orbits for a class of Hamiltonian systems. Calc. Var. Partial Differ. Equ. 12, 117–143 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. In: CBMS Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Providence, RI (1986)

  15. Rabinowitz, P.H.: Homoclinic orbits for a class of Hamiltonian systems. Proc. R. Soc. Edinb. Sect. A 114, 33–38 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rabinowitz, P.H., Tanaka, K.: Some results on connecting orbits for a class of Hamiltonian systems. Math. Z. 206, 473–499 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Séré, E.: Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z. 209, 133–160 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sun, J., Chen, H., Nieto, J.J.: Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems. J. Math. Anal. Appl. 373, 20–29 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sun, J., Nieto, J.J., Otero-Novoa, M.: On homoclinic orbits for a class of damped vibration systems. Adv. Differ. Equ. (2012). doi:10.1186/1687-1847-2012-102

    MathSciNet  MATH  Google Scholar 

  20. Sun, J., Wu, T.F.: Multiplicity and concentration of homoclinic solutions for some second order Hamiltonian systems. Nonlinear Anal. 114, 105–115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tang, X., Xiao, L.: Homoclinic solutions for non-autonomous second-order Hamiltonian systems with a coercive potential. J. Math. Anal. Appl. 351, 586–594 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wan, L., Tang, C.: Existence and multiplicity of homoclinic orbits for second order Hamiltonian systems without (AR) condition. Discrete Contin. Dyn. Syst. Ser. B 15, 255–271 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Wang, J., Xu, J., Zhang, F.: Homoclinic orbits for a class of Hamiltonian systems with superquadratic or asymptotically quadratic potentials. Commun. Pure Appl. Anal. 10, 269–286 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

  25. Wu, X., Zhang, W.: Existence and multiplicity of homoclinic solutions for a class of damped vibration problems. Nonlinear Anal. 74, 4392–4398 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xiao, J., Nieto, J.J.: Variational approach to some damped Dirichlet nonlinear impulsive differential equations. J. Frank. Inst. 348, 369–377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Z., Yuan, R.: Homoclinic solutions for some second-order nonautonomous systems. Nonlinear Anal. 71, 5790–5798 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, P., Tang, C.: Infinitely many periodic solutions for nonautonomous sublinear second-order Hamiltonian systems. Abstr. Appl. Anal. (2010). doi:10.1155/2010/620438

    MathSciNet  MATH  Google Scholar 

  29. Zhang, Q., Liu, C.: Infinitely many homoclinic solutions for second order Hamiltonian systems. Nonlinear Anal. 72, 894–903 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu, W.: Existence of homoclinic solutions for a class of second order systems. Nonlinear Anal. 75, 2455–2463 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zou, W.: Variant fountain theorems and their applications. Manuscr. Math. 104, 343–358 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank the referees for their valuable comments which have led to an improvement of the presentation of this paper.

Conflict of interest

The author declares that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanwei Chen.

Additional information

Communicated by Rosihan M. Ali.

Research supported by National Natural Science Foundation of China (No. 11401011).

Appendix

Appendix

Here, we give an example with infinitely many nontrivial homoclinic orbits for the system (1.2) in the special case \(N=2\).

For \(N=2\), we let \(u=u(t)=(\begin{array}{c}u_1(t)\\ u_2(t)\end{array})=(\begin{array}{c}u_1\\ u_2\end{array}), L(t)=(t^4\sin ^2t+1)(\begin{array}{cc}1\quad 0\\ 0\ \quad 1\end{array}), M=(\begin{array}{cc}0\quad -1\\ 1\ \quad 0\end{array})\) and \(H_u(t,u)=\nu P(t)|u|^{\nu -2}u\) with \(P(t)=\frac{b}{\nu -2}e^{|t|}\ge \frac{b}{\nu -2} (b\) and \(\nu \) are the constants in Corollary 1.1), then (1.2) becomes to

$$\begin{aligned} -\left( \begin{array}{c}\ddot{u}_1\\ \ddot{u}_2\end{array}\right) -\left( \begin{array}{cc}0\quad -1\\ 1\ \quad 0\end{array}\right) \left( \begin{array}{c}\dot{u}_1\\ \dot{u}_2\end{array}\right) +(t^4\sin ^2t+1)\left( \begin{array}{c}u_1\\ u_2\end{array}\right) =\nu P(t)|u|^{\nu -2}\left( \begin{array}{c}u_1\\ u_2\end{array}\right) . \end{aligned}$$

Obviously, Theorem 1.1 and Corollary 1.1 imply the above system has infinitely many nontrivial homoclinic orbits.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G. Multiple Homoclinics for Nonperiodic Damped Systems with Superlinear Terms. Bull. Malays. Math. Sci. Soc. 41, 1361–1376 (2018). https://doi.org/10.1007/s40840-016-0396-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-016-0396-1

Keywords

Mathematics Subject Classification

Navigation