Skip to main content

Advertisement

Log in

Dynamically downscaled coastal flooding in Brazil’s Guanabara Bay under a future climate change scenario

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In recent years, extensive research has been conducted on various aspects of climate change, with particular attention given to the sea level rise (SLR) as a significant consequence of global warming. Although a general trend of positive SLR exists worldwide, regional variations in SLR rates are observed. This study aims to investigate the potential impact of SLR projected by a Coupled Model Intercomparison Project phase 5 model, under a 4.5 W m\(^{-2}\) radiative forcing stabilization scenario by 2100, on coastal flooding along the Brazilian Coast. To achieve this, an ocean numerical downscaling approach was employed using multiple nested grids with the Regional Ocean Modeling System, with a specific focus on the Guanabara Bay region. Guanabara Bay is a vital water body that receives substantial water discharges from the densely populated Rio de Janeiro metropolitan area. Two experiments were conducted simulating the present (1995–2005) and future conditions (2090–2100), and the projected changes were evaluated. The results reveal a projected SLR of 0.69 m at Fiscal Island by the end of the century, anticipating potential loss of remaining mangrove areas and the expansion and persistence of coastal flooding in important tourist destinations within the Rio de Janeiro Municipality. Overall, this study provides valuable insights into the potential impacts of SLR on coastal flooding in the Brazilian Coast, emphasizing the importance of considering regional variations in SLR rates for effective coastal management and adaptation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alizad K, Hagen SC, Morris JT et al (2016) Coastal wetland response to sea-level rise in a fluvial estuarine system. Earth’s Future 4(11):483–497. https://doi.org/10.1002/2016EF000385

    Article  Google Scholar 

  • Alizad K, Hagen SC, Medeiros SC et al (2018) Dynamic responses and implications to coastal wetlands and the surrounding regions under sea level rise. PLoS ONE 13(10):1–27. https://doi.org/10.1371/journal.pone.0205176

    Article  CAS  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 Global Relief Model converted to PanMap layer format. https://doi.org/10.1594/PANGAEA.769615

  • Antonioli F, Anzidei M, Amorosi A et al (2017) Sea-level rise and potential drowning of the Italian coastal plains: flooding risk scenarios for 2100. Quatern Sci Rev 158:29–43. https://doi.org/10.1016/j.quascirev.2016.12.021

    Article  Google Scholar 

  • Aucelli PP, Di Paola G, Incontri P et al (2017) Coastal inundation risk assessement due to subsidence and sea level rise in a Mediterranean alluvial plain (Volturno coastal plain-southern Italy. Estuar Coast Shelf Sci 198:597–609. https://doi.org/10.1016/j.ecss.2016.06.017

    Article  Google Scholar 

  • Balica SF, Wright NG, van der Meulen F (2012) A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat Hazards 64(1):73–105. https://doi.org/10.1007/s11069-012-0234-1

    Article  Google Scholar 

  • Barth A, Alvera-Azcárate A, Rixen M et al (2005) Two-way nested model of mesoscale circulation features in the Ligurian Sea. Prog Oceanogr 66(2):171–189. https://doi.org/10.1016/j.pocean.2004.07.017

    Article  Google Scholar 

  • Bérgamo AL (2006) Características hidrográficas, da circulação e dos transportes de volume e sal na baía de guanabara (rj): Variações sazonais e moduladas pela maré. PhD thesis, Instituto Oceanográfico, Universidade de São Paulo, São Paulo

  • Bopp L, Resplandy L, Orr JC et al (2013) Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:6225–6245

    Article  Google Scholar 

  • Carson M, Köhl A, Stammer D (2015) The impact of regional multidecadal and century-scale internal climate variability on sea level trends in CMIP5 models. J Clim 28(2):853–861. https://doi.org/10.1175/JCLI-D-14-00359.1

    Article  Google Scholar 

  • Castro BM, Miranda LB (1998) Physical oceanography of the western atlantic continental shelf located between 4\(^{\circ }\) n and 34\(^{\circ }\) s coastal segment (4, w). In: Robinson AR, Brink KH (eds) The Sea. John Wiley & Sons, Oxford, pp 209–251

    Google Scholar 

  • Cavalcanti IFA, Shimizu MH (2012) Climate fields over South America and variability of SACZ and PSA in HadGEM2-ES. Am J Clim Chang 1:132–144

    Article  Google Scholar 

  • Chapman DC (1985) Numerical treatment of cross-shelf open boundaries in a Barotropic coastal ocean model. J Phys Oceanogr 15(8):1060–1075

    Article  Google Scholar 

  • Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32:585–602

    Article  Google Scholar 

  • Church JA, Clark PU, Cazenave A et al (2013) Sea level change. In: Stocker TF, Qin D, Plattner GK et al (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Collins WJ, Bellouin N, Doutriaux-Boucher M et al (2011) Development and evaluation of an Earth-System model - HadGEM2. Geosci Model Dev 4(4):1051–1075. https://doi.org/10.5194/gmd-4-1051-2011

    Article  Google Scholar 

  • Cooper JAG, Masselink G, G. Coco ADS, et al (2020) Sandy beaches can survive sea-level rise. Nat Climate Change 10:993–995. https://doi.org/10.1038/s41558-020-00934-2

  • da Silveira I, Lima J, Schmidt A et al (2008) Is the meander growth in the brazil current system off southeast brazil due to baroclinic instability? Dyn Atmos Oceans 45(3–4):187–207. https://doi.org/10.1016/j.dynatmoce.2008.01.002. (oceanic Fronts)

    Article  Google Scholar 

  • de Assis Costa LA, Pessoa DMM, da Silva CR (2018) Chemical and biological indicators of sewage river input to an urban tropical estuary (Guanabara Bay, Brazil). Ecol Ind 90:513–518. https://doi.org/10.1016/j.ecolind.2018.03.046

    Article  CAS  Google Scholar 

  • de Carvalho DG, Baptista-Neto JA (2016) Microplastic pollution of the beaches of Guanabara Bay, Southeast Brazil. Ocean Coast Manag 128:10–17. https://doi.org/10.1016/j.ocecoaman.2016.04.009

    Article  Google Scholar 

  • Di Nitto D, Neukermans G, Koedam N et al (2014) Mangroves facing climate change: landward migration potential in response to projected scenarios of sea level rise. Biogeosciences 11(3):857–871. https://doi.org/10.5194/bg-11-857-2014

    Article  Google Scholar 

  • Domingues CM, Church JA, White NJ et al (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453(7198):1090–1093

    Article  CAS  Google Scholar 

  • Egbert GD, Bennett AF, Foreman MGG (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res Oceans 99(C12):24821–24852. https://doi.org/10.1029/94JC01894

    Article  Google Scholar 

  • Fairall CW, Bradley EF, Rogers DP et al (1996) Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J Geophys Res 101(C2):3747–3764

    Article  Google Scholar 

  • Flather RA (1976) A tidal model of the northwest European continental shelf. Mem Soc R Sci Liege 10(6):141–164

    Google Scholar 

  • Gupta AS, Stellema A, Pontes GM et al (2021) Future changes to the upper ocean Western Boundary Currents across two generations of climate models. Sci Rep 11:9538. https://doi.org/10.1038/s41598-021-88934-w

    Article  CAS  Google Scholar 

  • Gusmão PP, Franco NM, Vianna SB et al (2010) Vulnerabilidade das megacidades brasileiras ás mudanças climáticas: Região metropolitana do rio de janeiro. In: Nobre C, Hogan DJ (eds) Projeto Megacidades. Vulnerabilidade e Mudanças Climáticas, INPE/UNICAMP/UFRJ, p 32

    Google Scholar 

  • Hedström KS (2012) Draft technical manual for a coupled sea-ice/ocean circulation model (version 4). Tech. Rep. OCS Study BOEM 2012-0xx, US Department of Interior, Bureau of Ocean Energy Management

  • Hermann AJ, Kearney K, Cheng W et al (2021) Coupled modes of projected regional change in the bering sea from a dynamically downscaling model under cmip6 forcing. Deep Sea Res Part II 194:104974. https://doi.org/10.1016/j.dsr2.2021.104974

    Article  CAS  Google Scholar 

  • Heuzé C, Heywood KJ, Stevens DP et al (2015) Changes in global ocean bottom properties and volume transports in CMIP5 models under climate change scenarios. J Clim 28(8):2917–2944. https://doi.org/10.1175/JCLI-D-14-00381.1

    Article  Google Scholar 

  • Hoff R, Michel Je (2014) Oil spill in mangroves-planning and response considerations. Tech. rep., U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Office of Response and Restoration

  • IPCC (2013) Climate change, (2013). In: Stocker T, Qin D, Plattner GK et al (eds) The physical science basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1535

  • Jones CD, Hughes JK, Bellouin N et al (2011) The hadgem2-es implementation of cmip5 centennial simulations. Geosci Model Dev 4(3):543–570. https://doi.org/10.5194/gmd-4-543-2011

    Article  Google Scholar 

  • Kirezci E, Young IR, Ranasinghe R et al (2020) Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st century. Sci Rep 10(11629):12

    Google Scholar 

  • Kjerfve B, Macintosh DJ (1997) The impact of climatic change on mangrove ecosystems. In: Kjerfve B, Lacerda LD, Diop E (eds) Mangrove ecosystem studies in Latin America and Africa. UNESCO, Paris, France, pp 1–7

    Google Scholar 

  • Kjerfve B, Ribeiro CHA, Dias GTM et al (1997) Oceanographic characteristics of an impacted coastal bay: Baía de guanabara, rio de janeiro, brazil. Cont Shelf Res 17(13):1609–1643

    Article  Google Scholar 

  • Kulp S, Strauss B (2019) New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat Commun 10(4844):1–12. https://doi.org/10.1038/s41467-019-12808-z

    Article  CAS  Google Scholar 

  • Lins-de Barros F, Parente-Ribeiro L (2018) How much is a beach worth: Economic use and vulnerability to coastal erosion: The case of ipanema and arpoador beaches, rio de janeiro (brazil). In: Leal Filho W. EdFL (ed) Climate Change Adaptation in Latin America., 1st edn. Springer, Cham, chap 13, p 207–222. https://doi.org/10.1007/978-3-319-56946-8_13

  • Liu Y, Lee SK, Enfield DB et al (2015) Potential impact of climate change on the Intra-Americas Sea: Part-1. A dynamic downscaling of the CMIP5 model projections. J Mar Syst 148:56–69. https://doi.org/10.1016/j.jmarsys.2015.01.007

    Article  Google Scholar 

  • Mandarino FC, Arueira LR (2012) Vulnerabilidade á elevação do nível médio do mar na região metropolitana do rio de janeiro. In: Passos IP (ed) Coleção Estudos Cariocas. No. 20120702 in 1984-7203, IPP/Prefeitura da Cidade do Rio de Janeiro, Rio de Janeiro - RJ, p 1–15

  • Mano MF, Paiva AM, Torres AR Jr et al (2009) Energy flux to a cyclonic eddy off Cabo Frio, Brazil. J Phys Oceanogr 39(11):2999–3010. https://doi.org/10.1175/2009JPO4026.1

    Article  Google Scholar 

  • Marchesiello P, McWilliams JC, Shchepetkin A (2001) Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3(1–2):1–20. https://doi.org/10.1016/S1463-5003(00)00013-5

    Article  Google Scholar 

  • Mason E, Molemaker J, Shchepetkin AF et al (2010) Procedures for offline grid nesting in regional ocean models. Ocean Model 35(1–2):1–15. https://doi.org/10.1016/j.ocemod.2010.05.007

    Article  Google Scholar 

  • Mazda Y, Kobashi D, Okada S (2005) Tidal-scale hydrodynamics within mangrove swamps. Wetlands Ecol Manag 13(6):647–655. https://doi.org/10.1007/s11273-005-0613-4

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875. https://doi.org/10.1029/RG020i004p00851

    Article  Google Scholar 

  • Melsom A, Lien VS, Budgell WP (2009) Using the Regional Ocean Modeling System (ROMS) to improve the ocean circulation from a GCM 20th century simulation. Ocean Dyn 59(6):969–981. https://doi.org/10.1007/s10236-009-0222-5

    Article  Google Scholar 

  • Merrifield MA, Maltrud ME (2011) Regional sea level trends due to a pacific trade wind intensification. Geophys Res Lett. https://doi.org/10.1029/2011GL049576

  • Mill GN, da Costa VS, Lima ND et al (2015) Northward migration of cape são tomé rings, brazil. Cont Shelf Res 106:27–37. https://doi.org/10.1016/j.csr.2015.06.010

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. https://doi.org/10.1038/nature08823

    Article  CAS  Google Scholar 

  • Muehe D (2010) Brazilian coastal vulnerability to climate change. Pan-Am J Aquat Sci 5(2):173–183

    Google Scholar 

  • Munasinghe M, Menezes B, Preece M (1991) Rio reconstruction and flood prevention in Brazil. Land Use Policy 8(4):282–287. https://doi.org/10.1016/0264-8377(91)90018-E

    Article  Google Scholar 

  • Nicholls RJ (2004) Coastal flooding and wetland loss in the 21st century: changes under the sres climate and socio-economic scenarios. Glob Environ Change 14(1):69–86. https://doi.org/10.1016/j.gloenvcha.2003.10.007. (climate Change)

    Article  Google Scholar 

  • Nicholls RJ, Hoozemans FM, Marchand M (1999) Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Global Environmental Change 9. Supplement 1:S69–S87. https://doi.org/10.1016/S0959-3780(99)00019-9

    Article  Google Scholar 

  • Nunes K, Abelheira M, Gomes O et al (2020) Disaster risk assessment: the experience of the city of Rio de Janeiro in developing an impact scale for meteorological-related disasters. Prog Disaster Sci 5:100053. https://doi.org/10.1016/j.pdisas.2019.100053

    Article  Google Scholar 

  • Passeri DL, Hagen SC, Medeiros SC et al (2015) The dynamic effects of sea level rise on low-gradient coastal landscapes: a review. Earth’s Future 3(6):159–181. https://doi.org/10.1002/2015EF000298

    Article  Google Scholar 

  • Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in matlab using t_tide. Comput Geosci 28(8):929–937. https://doi.org/10.1016/S0098-3004(02)00013-4

    Article  Google Scholar 

  • Perrette M, Landerer F, Riva R et al (2013) A scaling approach to project regional sea level rise and its uncertainties. Earth Syst Dyn 4:11–29. https://doi.org/10.5194/esd-4-11-2013

    Article  Google Scholar 

  • Pham VS, Hwang JH, Ku H (2016) Optimizing dynamic downscaling in one-way nesting using a regional ocean model. Ocean Model 106:104–120. https://doi.org/10.1016/j.ocemod.2016.09.009

    Article  Google Scholar 

  • Pontes GM, Gupta AS, Taschetto AS (2016) Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: the role of wind and deep ocean changes. Environ Res Lett 11(9):094013

    Article  Google Scholar 

  • Pozo Buil M, Jacox MG, Fiechter J et al (2021) A dynamically downscaled ensemble of future projections for the california current system. Front Mar Sci. https://doi.org/10.3389/fmars.2021.612874

    Article  Google Scholar 

  • Ramirez JA, Lichter M, Coulthard TJ et al (2016) Hyper-resolution mapping of regional storm surge and tide flooding: comparison of static and dynamic models. Nat Hazards 82(1):571–590. https://doi.org/10.1007/s11069-016-2198-z

    Article  Google Scholar 

  • Roberto DM (2009) Diagnóstico da hidrografia - estação ecológica da guanabara e região. In: Plano de Manejo da Estação Ecológica da Guanabara. Ecomek, p 22

  • Rohmer J, Vousdoukas MI, Mentaschi L et al (2019) Increased extreme coastal water levels due to the combined action of storm surges and wind waves. Geophys Res Lett 46(8):4356–4364

    Article  Google Scholar 

  • Sampath DM, Boski T, Silva PL et al (2011) Morphological evolution of the guadiana estuary and intertidal zone in response to projected sea-level rise and sediment supply scenarios. J Quat Sci 26(2):156–170. https://doi.org/10.1002/jqs.1434

    Article  Google Scholar 

  • Santos MCFV, Zieman JC, Cohen RRH (1997) Interpreting the upper mid-lateral zonation patterns of mangroves in maranhão (brazil) in response to microtopography and hidrology. In: Kjerfve B, Lacerda L, Diop E (eds) Mangrove ecosystem studies in Latin America and Africa. UNESCO, Paris, France, pp 127–144

  • Schaeffer-novelli Y (2000) Grupo de ecossistemas: manguezal, marisma e apicum, são Paulo. 119p

  • Schaeffer-novelli Y, Cintrón-molero G, Adaime RR et al (1990) Variability of mangrove ecosystems along the brazilian coast. Estuaries 13(2):204–218

    Article  Google Scholar 

  • Schaeffer-novelli Y, Cintrón-molero G, Soares MLG et al (2000) Brazilian mangroves. Aquat Ecosyst Health Manag 3:561–570

    Article  Google Scholar 

  • Seenath A, Wilson M, Miller K (2016) Hydrodynamic versus gis modelling for coastal flood vulnerability assessment: Which is better for guiding coastal management? Ocean Coast Manag 120:99–109. https://doi.org/10.1016/j.ocecoaman.2015.11.019

    Article  Google Scholar 

  • Shaltout M, Tonbol K, Omstedt A (2015) Sea-level change and projected future flooding along the egyptian mediterranean coast. Oceanologia 57(4):293–307. https://doi.org/10.1016/j.oceano.2015.06.004

    Article  Google Scholar 

  • Shchepetkin AF, Mcwilliams JC (2005) The regional oceanic modeling system (ROMS): a spli-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9:347–404

    Article  Google Scholar 

  • Slangen ABA, Carson M, Katsman CA et al (2014) Projecting twenty-first century regional sea-level changes. Clim Change 124:317–332

    Article  CAS  Google Scholar 

  • Soares MLG, de Oliveira CF, Corrêa FM et al (2003) Diversidade estrutural de bosques de mangue e sua relação com distúrbios de origem antrópica: o caso da baía de guanabara (rio de janeiro). Anuário do Instituto de Geociências 26:101–116

    Article  Google Scholar 

  • Soares MLG, de Almeida PMM, Cavalcanti VF et al (2010) Vulnerabilidade dos sistemas naturais: Vulnerabilidade dos manguezais da região metropolitana do rio de janeiro face ás mudanças climáticas. In: Nobre C, Hogan DJ (eds) Projeto Megacidades, Vulnerabilidade e Mudanças Climáticas. INPE/UNICAMP/UFRJ, São José dos Campos - SP, pp 259–289

    Google Scholar 

  • Spencer T, Schuerch M, Nicholls RJ et al (2016) Global coastal wetland change under sea-level rise and related stresses: The diva wetland change model. Global Planet Change 139:15–30. https://doi.org/10.1016/j.gloplacha.2015.12.018

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2011) A summary of the CMIP5 Experiment design. http://cmip-pcmdi.llnl.gov/cmip5/docs

  • Thomson AM, Calvin KV, Smith SJ et al (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Change 109:77–94. https://doi.org/10.1007/s10584-011-0151-4

    Article  CAS  Google Scholar 

  • Timmermann A, McGregor S, Jin FF (2010) Wind effects on past and future regional Sea Level Trends in the Southern Indo-Pacific. J Clim 23(16):4429–4437. https://doi.org/10.1175/2010JCLI3519.1

    Article  Google Scholar 

  • TOPOCART (2014) Levantamento aerofotogramétrico e perfilamento a laser: Niterói - rj. Tech. rep., Secretaria Municipal de Urbanismo e Mobilidade de Niterói, topografia Engenharia e Aerolevantamentos S/S LTDA

  • Toste R, Assad LP, Landau L (2018) Downscaling of the global HadGEM2-ES results to model the future and present-day ocean conditions of the southeastern Brazilian continental shelf. Clim Dyn 51(1–2):143–159. https://doi.org/10.1007/s00382-017-3911-7

    Article  Google Scholar 

  • Tucci CEM, Bertoni JC (2003) Inundações urbanas na América do Sul, 1st edn. ISBN 8588686074, Associação Brasileira de Recursos Hídricos, Porto Alegre, Brasil

  • Tucci CEM (1995) Inundações urbanas. In: Tucci C, Porto R, Barros M (eds) Drenagem Urbana. Associação Brasileira de Recursos Hídricos, Porto Alegre, Brasil, p 15–36, iSBN 8570253648

  • United Nations Environment Programme (2015) Paris agreement. https://wedocs.unep.org/20.500.11822/20830

  • Vasconcelos AO, Toste R, Rangel RH, et al (2015) Study of sensitivity of the environment to accidental oil pollution in the south coast of bahia state - brazil. In: SPE Latin American and Caribbean Health, Safety, Environment and Sustainability Conference. Society of Petroleum Engineers, Bogotá, Colômbia, https://doi.org/10.2118/174141-MS

  • Vousdoukas MI, Voukouvalas E, Annunziato A et al (2016) Projections of extreme storm surge levels along europe. Clim Dyn 47(9):3171–3190. https://doi.org/10.1007/s00382-016-3019-5

    Article  Google Scholar 

  • Vousdoukas MI, Voukouvalas E, Mentaschi L et al (2016) Developments in large-scale coastal flood hazard mapping. Nat Hazard 16(8):1841–1853. https://doi.org/10.5194/nhess-16-1841-2016

    Article  Google Scholar 

  • Vousdoukas MI, Ranasinghe R, Mentaschi L et al (2020) Reply to: Sandy beaches can survive sea-level rise. Nat Clim Chang 10:996–997. https://doi.org/10.1038/s41558-020-00935-1

    Article  Google Scholar 

  • Vousdoukas MI, Ranasinghe R, Mentaschi L et al (2020) Sandy coastlines under threat of erosion. Nat Clim Chang 10:260–263. https://doi.org/10.1038/s41558-020-0697-0

    Article  Google Scholar 

  • Warner JC, Defne Z, Haas K et al (2013) A wetting and drying scheme for roms. Comput Geosci 58:54–61

    Article  Google Scholar 

  • Wong P, Losada I, Gattuso JP, et al (2014) Coastal systems and low-lying areas. In: Field C, Barros V, Dokken D, et al (eds) Climate Change 2014: Impacts,Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, chap 5, p 361–409

  • Yin J (2012) Century to multi-century sea level rise projections from CMIP5 models. Geophys Res Lett 39(17):L17709. https://doi.org/10.1029/2012GL052947

    Article  Google Scholar 

  • Yin J, Griffies SM, Stouffer RJ (2010) Spatial variability of sea level rise in twenty-first century projections. J Phys Oceanogr 23(17):4585–4607. https://doi.org/10.1175/2010JCLI3533.1

    Article  Google Scholar 

  • Zanetti VB, de Sousa Junior WC, De Freitas DM (2016) A climate change vulnerability index and case study in a brazilian coastal city. Sustainability 8(8):811. https://doi.org/10.3390/su8080811

    Article  Google Scholar 

Download references

Funding

This work was supported by ANP (Agência Nacional do Petróleo, Gás Natural e Biocombustíveis) through the Human Resources Program (PRH-ANP 02; 2010.3804-1).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception. Data preparation, numerical experiments and analysis were performed by Raquel Toste. Geoprocessing data was prepared by Adriano Vasconcelos and Raquel Toste. The first draft of the manuscript was written by Raquel Toste and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Raquel Toste.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 8159 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toste, R., Vasconcelos, A., Assad, L.P.d.F. et al. Dynamically downscaled coastal flooding in Brazil’s Guanabara Bay under a future climate change scenario. Nat Hazards (2024). https://doi.org/10.1007/s11069-024-06556-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11069-024-06556-7

Keywords

Navigation