Skip to main content

Advertisement

Log in

Downscaling of the global HadGEM2-ES results to model the future and present-day ocean conditions of the southeastern Brazilian continental shelf

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Changes in the regional hydrodynamics of the region of the South Atlantic near the east coast of Brazil were evaluated from the beginning to the end of the century. The analysis was based on the anomalies from two downscaling experiments using the HadGEM2-ES outputs for the historical and RCP4.5 runs from the Coupled Model Inter-comparison Project phase 5. The anomalies between the experiments were collected in a system of two nested grids, with \(1/3^\circ\) and \(1/12^\circ\) horizontal resolutions. A northward displacement of the Brazil Current (BC), a southward BC transport intensification, and a 1.44 \(^\circ\)C increase of the mean values of sea surface temperatures were observed. The sea level rise (SLR) was projected up until 2100 across the study area, and the spatial variations were shown to have an average on SLR rate of 7.30 mm year\(^{-1}\) for those regions close to the coast. These results highlight the importance of studying climate change and applying methods to enable the evaluation of its effects on coastal zones, especially for regions with few existing studies, such as the Brazilian continental shelf area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15(16):2205–2231. doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2

    Article  Google Scholar 

  • Böck CS (2015) Variabilidade dos transportes oceânicos da corrente do Brasil em um cenário de emissões do IPCC. PhD thesis, UFRJ/COPPE

  • Boebel O, Davis RE, Ollitrault M, Peterson RG, Richardson PL, Schmid C, Zenk W (1999) The intermediate depth circulation of the western South Atlantic. Geophys Res Lett 26(21):3329–3332. doi:10.1029/1999GL002355

    Article  Google Scholar 

  • Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP, Gehlen M, Halloran P, Heinze C, Ilyina T, Séférian R, Tjiputra J, Vichi M (2013) Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:6225–6245

    Article  Google Scholar 

  • Brands S, Herrera S, Fernández J, Gutiérrez JM (2013) How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa? Clim Dyn 41(3):803–817. doi:10.1007/s00382-013-1742-8

    Article  Google Scholar 

  • Bryden HL, King BA, McCarthy GD (2011) South Atlantic overturning circulation at \(24^\circ\) S. J Mar Res 69(1):38–55. doi:10.1357/002224011798147633

    Article  Google Scholar 

  • Casey KS, Brandon TB, Cornillon P, Evans R (2010) The past, present, and future of the AVHRR pathfinder SST program. Springer, Dordrecht, pp 273–287. doi:10.1007/978-90-481-8681-5_16

    Google Scholar 

  • Cavalcanti IFA, Shimizu MH (2012) Climate fields over South America and variability of SACZ and PSA in HadGEM2-ES. Am J Clim Change 1:132–144

    Article  Google Scholar 

  • Cazenave A, Cozannet GL (2014) Sea level rise and its coastal impacts. Earth’s Future 2(2):15–34. doi:10.1002/2013EF000188

    Article  Google Scholar 

  • Chapman DC (1985) Numerical Treatment of Cross-Shelf Open Boundaries in a Barotropic Coastal Ocean Model. J Phys Oceanogr 15(8):1060–1075

    Article  Google Scholar 

  • Cheng L, Trenberth KE, Palmer MD, Zhu J, Abraham JP (2016) Observed and simulated full-depth ocean heat-content changes for 1970–2005. Ocean Sci 12(4):925–935. doi:10.5194/os-12-925-2016

    Article  Google Scholar 

  • Cheng W, Chiang JCH, Zhang D (2013) Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J Clim 26(18):7187–7197. doi:10.1175/JCLI-D-12-00496.1

    Article  Google Scholar 

  • Chiessi CM, Mulitza S, Groeneveld J, Silva JB, Campos MC, Gurgel MH (2014) Variability of the Brazil current during the late Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 415:28–36. doi:10.1016/j.palaeo.2013.12.005

    Article  Google Scholar 

  • Chou SC, Lyra A, Mourão C, Dereczynski C, Pilotto I, Gomes J, Bustamante J, Tavares P, Silva A, Rodrigues D, Campos D, Chagas D, Sueiro G, Siqueira G, Marengo J (2014) Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios. Am J Clim Change 3(5):512–527. doi:10.4236/ajcc.2014.35043

    Article  Google Scholar 

  • Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Cirano M, Mata MM, Campos EJD, Deiró NFR (2006) A circulação oceânica de larga-escala na região oeste do Atlântico Sul com base no modelo de circulação global OCCAM. Revista Brasileira de Geofísica 24(2):209–230

    Article  Google Scholar 

  • CMEMS (2016) Product user manual for sea level SLA products. Technical report, copernicus marine environment monitoring service. http://marine.copernicus.eu/documents/PUM/CMEMS-SL-PUM-008-017-033.pdf. Accessed 01 Feb 2017

  • Collins WJ, Bellouin N, Doutriaux-boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O’connor F, Rae J, Senior C, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an Earth-system model—HadGEM2. Geosci Model Dev 4:1051–1075

    Article  Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19(2):183–204

    Article  Google Scholar 

  • Egbert GD, Bennett AF, Foreman MGG (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res Oceans 99(C12):24,821–24,852

    Article  Google Scholar 

  • Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS (1996) Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J Geophys Res 101(C2):3747–3764

    Article  Google Scholar 

  • Flather RA (1976) A tidal model of the northwest European continental shelf. Mem Soc R Sci Liege 10(6):141–164

    Google Scholar 

  • Garzoli SL, Matano R (2011) The South Atlantic and the Atlantic meridional overturning circulation. Deep Sea Res Part II Top Stud Oceanogr 58(17–18):1837–1847. doi:10.1016/j.dsr2.2010.10.063

    Article  Google Scholar 

  • Gaspar P, Ponte RM (1997) Relation between sea level and barometric pressure determined from altimeter data and model simulations. J Geophys Res Oceans 102(C1):961–971. doi:10.1029/96JC02920

    Article  Google Scholar 

  • Gupta AS, Jourdain NC, Brown JN, Monselesan D (2013) Climate drift in the CMIP5 models. J Clim 26(21):8597–8615. doi:10.1175/JCLI-D-12-00521.1

    Article  Google Scholar 

  • Henson SA, Beaulieu C, Lampitt R (2016) Observing climate change trends in ocean biogeochemistry: when and where. Global Change Biol 22(4):1561–1571. doi:10.1111/gcb.13152

    Article  Google Scholar 

  • Heuzé C, Heywood KJ, Stevens DP, Ridley JK (2015) Changes in global ocean bottom properties and volume transports in CMIP5 models under climate change scenarios. J Clim 28(8):2917–2944. doi:10.1175/JCLI-D-14-00381.1

    Article  Google Scholar 

  • Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ, Bell C, Boo KO, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR, Hurtt G, Ingram WJ, Lamarque JF, Law RM, Meinshausen M, Osprey S, Palin EJ, Chini LP, Raddatz T, Sanderson MG, Sellar AA, Schurer A, Valdes P, Wood N, Woodward S, Yoshioka M, Zerroukat M (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4(3):543–570. doi:10.5194/gmd-4-543-2011

    Article  Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Baranova OK, Garcia HE, Locarnini RA, Mishonov AV, Reagan JR, Seidov D, Yarosh ES, Zweng MM (2012) World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett. doi:10.1029/2012GL051106,l10603

  • Liu Y, Lee SK, Enfield DB, Muhling BA, Lamkin JT, Muller-Karger FE, Roffer MA (2015) Potential impact of climate change on the Intra-Americas Sea: Part-1. A dynamic downscaling of the CMIP5 model projections. J Mar Syst 148:56–69. doi:10.1016/j.jmarsys.2015.01.007

    Article  Google Scholar 

  • Lyra AA, Chou SC, Sampaio GO (2016) Sensitivity of the Amazon biome to high resolution climate change projections. Acta Amaz 46:175–188. doi:10.1590/1809-4392201502225

    Article  Google Scholar 

  • Marchesiello P, McWilliams JC, Shchepetkin A (2001) Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3(1–2):1–20. doi:10.1016/S1463-5003(00)00013-5

    Article  Google Scholar 

  • Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, O’Connor FM, Roberts MJ, Rodriguez JM, Woodward S, Best MJ, Brooks ME, Brown AR, Butchart N, Dearden C, Derbyshire SH, Dharssi I, Doutriaux-Boucher M, Edwards JM, Falloon PD, Gedney N, Gray LJ, Hewitt HT, Hobson M, Huddleston MR, Hughes J, Ineson S, Ingram WJ, James PM, Johns TC, Johnson CE, Jones A, Jones CP, Joshi MM, Keen AB, Liddicoat S, Lock AP, Maidens AV, Manners JC, Milton SF, Rae JGL, Ridley JK, Sellar A, Senior CA, Totterdell IJ, Verhoef A, Vidale PL, Wiltshire A (2011) The HadGEM2 family of Met Office Unified Model climate configurations. Geosci Model Dev 4:723–757. doi:10.5194/gmd-4-723-2011

    Article  Google Scholar 

  • Mason E, Molemaker J, Shchepetkin AF, Colas F, McWilliams JC, Sangrà P (2010) Procedures for offline grid nesting in regional ocean models. Ocean Model 35(1–2):1–15. doi:10.1016/j.ocemod.2010.05.007

    Article  Google Scholar 

  • Matear RJ, Hirst AC (1999) Climate change feedback on the future oceanic CO2 uptake. Tellus 51B:722–733

    Article  Google Scholar 

  • Melsom A, Lien VS, Budgell WP (2009) Using the regional ocean modeling system (ROMS) to improve the ocean circulation from a GCM 20th century simulation. Ocean Dyn 59(6):969–981. doi:10.1007/s10236-009-0222-5

    Article  Google Scholar 

  • Müller TJ, Ikeda Y, Zangenberg N, Nonato LV (1998) Direct measurements of western boundary currents off Brazil between \(20^\circ\)S and \(28^\circ\)S. J Geophys Res Oceans 103(C3):5429–5437. doi:10.1029/97JC03529

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  Google Scholar 

  • Pereira J, Cirano M, Marta-Almeida M, Amorim FN (2013) A regional study of the Brazilian shelf/slope circulation (\(13^\circ\)\(31^\circ\) S) using climatological open boundaries. Braz J Geophys 31(2):289–305

    Google Scholar 

  • Pontes GM, Gupta AS, Taschetto AS (2016) Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: the role of wind and deep ocean changes. Environ Res Lett 11(9):094013

    Article  Google Scholar 

  • Qiu B, Chen S, Wu L, Kida S (2015) Wind- versus Eddy-forced regional sea level trends and variability in the North Pacific Ocean. J Clim 28(4):1561–1577. doi:10.1175/JCLI-D-14-00479.1

    Article  Google Scholar 

  • Rhein M, Rintoul S, Aoki S, Campos E, Chambers D, Feely R, Gulev S, Johnson G, Josey S, Kostianoy A, Mauritzen C, Roemmich D, Talley L, Wang F (2013) Observations: Ocean. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Rocha CB, da Silveira ICA, Castro BM, Lima JAM (2014) Vertical structure, energetics, and dynamics of the Brazil Current System at \(22^\circ\) S-\(28^\circ\) S. J Geophys Res Oceans 119(1):52–69. doi:10.1002/2013JC009143

    Article  Google Scholar 

  • Rodrigues RR, Rothstein LM, Wimbush M (2007) Seasonal variability of the South Equatorial Current Bifurcation in the Atlantic Ocean: a numerical study. J Phys Oceanogr 37:16–30

    Article  Google Scholar 

  • Rodrigues RR, Campos EJD, Haarsma R (2015) The Impact of ENSO on the South Atlantic Subtropical Dipole Mode. Journal of Climate 28(7):2691–2705. doi:10.1175/JCLI-D-14-00483.1

    Article  Google Scholar 

  • Sancho LMB, de Freitas Assad LP, Landau L (2015) Volume and heat transports analysis in the South Atlantic Basin related to climate change scenarios. Revista Brasileira de Geofísica 33(2):333–348

    Article  Google Scholar 

  • Shchepetkin AF, Mcwilliams JC (2005) The regional oceanic modeling system (ROMS): a spli-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9:347–404

    Article  Google Scholar 

  • Ramos da Silva R, Haas R (2016) Ocean global warming impacts on the South America climate. Front Earth Sci 4:30. doi:10.3389/feart.2016.00030

    Article  Google Scholar 

  • Silveira ICA, Schmidt ACK, Campos EJD, Godoi SS, Ikeda Y (2000) A Corrente do Brasil ao largo da costa leste brasileira. Revista Brasileira de Oceanografia 48(2):171–183

    Article  Google Scholar 

  • da Silveira ICA, Calado L, Castro BM, Cirano M, Lima JAM, Mascarenhas AdS (2004) On the baroclinic structure of the Brazil Current-Intermediate Western Boundary Current system at \(22^\circ\) G–\(23^\circ\) S. Geophys Res Lett. doi:10.1029/2004GL020036,l14308

  • Stammer D, Cazenave A, Ponte RM, Tamisiea ME (2013) Causes for contemporary regional sea level changes. Ann Rev Mar Sci 5(1):21–46. doi:10.1146/annurev-marine-121211-172406

    Article  Google Scholar 

  • Stramma L, England M (1999) On the water masses and mean circulation of the South Atlantic Ocean. J Geophys Res Oceans 104(C9):20,863–20,883

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2011) A summary of the CMIP5 Experiment design. http://cmippcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf. Accessed 01 Feb 2017

  • Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Change 109(1):77. doi:10.1007/s10584-011-0151-4

    Article  Google Scholar 

  • Timmermann A, McGregor S, Jin FF (2010) Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J Clim 23(16):4429–4437. doi:10.1175/2010JCLI3519.1

    Article  Google Scholar 

  • Wolter K, Timlin MS (1993) Monitoring ENSO in COADS with a seasonally adjusted principal component index. In: Proceedings of the 17th climate diagnostics workshop, pp 52–57

  • Wunsch C, Stammer D (1997) Atmospheric loading and the oceanic “inverted barometer” effect. Rev Geophys 35(1):79–107. doi:10.1029/96RG03037

  • Yin J (2012) Century to multi-century sea level rise projections from CMIP5 models. Geophysical Research Lett. doi:10.1029/2012GL052947,l17709

  • Yin J, Griffies SM, Stouffer RJ (2010) Spatial Variability of Sea Level Rise in Twenty-First Century Projections. Journal of Physical Oceanography 23:4585–312. doi:10.1175/2010JCLI3533.1

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank ANP (Agência Nacional do Petróleo, Gás Natural e Biocombustíveis) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Toste.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toste, R., Assad, L.P.d. & Landau, L. Downscaling of the global HadGEM2-ES results to model the future and present-day ocean conditions of the southeastern Brazilian continental shelf. Clim Dyn 51, 143–159 (2018). https://doi.org/10.1007/s00382-017-3911-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3911-7

Keywords

Navigation