Skip to main content

Advertisement

Log in

Assessing landslide susceptibility using improved machine learning methods and considering spatial heterogeneity for the Three Gorges Reservoir Area, China

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

When conducting susceptibility evaluation for study areas of special significance, especially those with spatial heterogeneity of landslide development, it is easy to ignore the potential errors caused by spatial asymmetry of geographic factors and differences in landslide development when evaluating the whole area. This study proposed an evaluation method that breaks down the Three Gorges Reservoir Area (TGRA) into smaller regions and assesses the susceptibility of landslides to each sub-region in order to assess and resolve the effect of spatial heterogeneity within the entire reservoir area of the TGRA. This method uses a combination of certainty factors (CF) and machine learning models to identify the key factors of high susceptibility index. Three machine learning models—the support vector machine (SVM), the logistic regression (LR), and the gradient boosted descent tree (GBDT)—were improved in this study. These enhanced models incorporate CF, resulting in the creation of CF-LR, CF-SVM, and CF-GBDT models. The results of the zonal evaluation are superior to those of the direct overall assessment, according to the examination of receiver operating characteristic (ROC) curves, and CF-GBDT outperforms the other five models in terms of determining the susceptibility of the entire TGRA. The occurrence of regional heterogeneity in the TGRA is confirmed by the CF-GBDT model, which also takes into account the importance of landslide influence factors between Region I and Region II. By analyzing the impact of zonal evaluation on each district and county in the TGRA, the significance of zoning in the study of landslide susceptibility within large watersheds is emphasized, providing a new perspective for regional landslide susceptibility assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

Download references

Funding

The authors declare that no funds, grants, or other supports were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by JD, RN, TC, and LD. JD wrote the manuscript's initial draft, while all of the other authors offered feedback on earlier drafts. The final manuscript was read and approved by all writers.

Corresponding authors

Correspondence to Jiahui Dong or Ruiqing Niu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Niu, R., Chen, T. et al. Assessing landslide susceptibility using improved machine learning methods and considering spatial heterogeneity for the Three Gorges Reservoir Area, China. Nat Hazards 120, 1113–1140 (2024). https://doi.org/10.1007/s11069-023-06235-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-023-06235-z

Keywords

Navigation