Skip to main content

Advertisement

Log in

Soil erosion estimation of Bhandara region of Maharashtra, India, by integrated use of RUSLE, remote sensing, and GIS

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The agricultural land of the whole world is deteriorating due to the loss of top fertile soil reducing agricultural productivity and groundwater availability. Mainly, natural conditions and human manipulations have made soils extremely prone to soil erosion. Therefore, information on soil erosion status is of paramount importance to the policymakers for land conservation planning in a limited time. Spatial information systems like GIS and RS are known for their efficiencies. With that prospect, the GIS-based RUSLE model is used in this study to assess the soil erosion losses from Bhandara regions of Maharashtra, India. The study area comes under Wainganga sub-river basin, a portion of the Godavari River basin. We have prepared the required five potential parameters (R*K*LS*C*P) of RUSLE model on pixel-to-pixel basis. We have prepared the R factor map from monthly rainfall data of Indian Meteorological Department (IMD) and K factor map by digital the soil series map of NBSS & LUP, Govt. of India. We have used the digital elevation model data (DEM) of Cartosat-1 for LS-factor map, Landsat 8 and Sentinel-2A satellite dataset to generate LULC and NDVI map to obtain C and P factors. The results and satellite data were validated using Google Earth Pro and field observations. The results showed significant soil erosion from the river banks and wastelands near water bodies, with the soil loss values ranging between 20 and 40 t ha−1 yr−1. The land under reserved forest was very slight erosion-prone soil with soil loss of < 5 t ha−1 yr−1, but few water bodies in forest land have resulted in more than 40 t ha−1 yr−1. Some steep sloppy land near the riverbank showed soil erosion loss ranging from 44.37 to 241.03 t ha−1 yr−1 due to higher water forces, most minor vegetation, high steep slopes, and sandy loam soils. The spatial techniques used for assessing soil erosion in the study area will be helpful for decision-makers and planners to take appropriate land management measures to counter the soil loss and protect the natural environment. Thus, the GIS-based RUSLE model is a convenient, time-efficient, and cost-effective tool to evaluate and map soil erosion on a pixel-to-pixel basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manik Chandra Kundu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashiwar, S.R., Kundu, M.C. & Dongarwar, U.R. Soil erosion estimation of Bhandara region of Maharashtra, India, by integrated use of RUSLE, remote sensing, and GIS. Nat Hazards 110, 937–959 (2022). https://doi.org/10.1007/s11069-021-04974-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04974-5

Keywords

Navigation