Skip to main content
Log in

GPS, scaling exponent and past seismicity for seismic hazard assessment in Garhwal–Kumaun, Himalayan region

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The world’s most geologically complex Himalayan arc is well known for its tectonic and seismic activities due to the collision of Indian and Eurasian plates. Based on these elements [global positioning system (GPS) deformation measurements, scaling exponent (D) of the tectonic elements and past seismicity] studied here can contribute to better understanding of dynamics and complexities of earthquakes occurrence in any region. In the present paper, the crustal deformation is analyzed with the 3-year campaign and continuous GPS sites data. The velocity vectors of the sites with IGS05 reference frame ranges from 35 to 50 mm/year and give strain-rate measurements up to 130 × 10−9 strain/year. Further, the study region was divided into number of blocks of 1° × 1° that gives different D value based on the presence and distribution of tectonic elements in a particular block. One of the blocks was identified with very high D value of 1.82, where the least seismic activity and extensive convergence due to strain accumulation in comparison with other blocks of higher capacity dimensional value has been observed. Particularly this block lying between latitude 29°N–30°N and longitude 79°E–80°E is considered to be the probable highest seismic hazard zone in the study area. Significance of the combined application of GPS study, scaling exponent and the characteristics of seismicity are stated as helpful methods in the identification of hazardous zone in the Eastern part of the central seismic gap in the Himalaya or in any active areas of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akilan A, Balaji S, Malaimani EC, Ravikumar N, Abilash K (2012) Current scenario of crustal deformation and strain distribution around the equatorial Indian Ocean region using GPS-geodesy. J Ind Geophys Union 16(1):21–28

    Google Scholar 

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112:B09401. doi:10.1029/2007JB004949

    Google Scholar 

  • Ambraseys N, Douglas J (2004) Magnitude calibration of north Indian earthquakes. Geophys J Int 159:165–206

    Article  Google Scholar 

  • Ambraseys N, Jackson D (2003) A note on early earthquakes in northern India and southern Tibet. Curr Sci 84:571–582

    Google Scholar 

  • Banerjee P, Burgmann R (2002) Convergence across the northwest Himalaya from GPS measurements. Geophys Res Lett 29(13):301–304

    Article  Google Scholar 

  • Banerjee P, Burgmann R, Nagarajan B, Apel E (2008) Intraplate deformation of the Indian subcontinent. Geophys Res Lett 35:L18301. doi:10.1029/2008GL035468

    Article  Google Scholar 

  • Barazangi M, Ni J (1982) Velocities and propagation characteristics of Pn and Sn beneath the Himalayan arc and Tibetan plateau: possible evidence for underthrusting of Indian continental lithosphere beneath Tibet. Geology 10:179–185

    Article  Google Scholar 

  • Bilham R, Bodin P, Jackson M (1995) Entertaining a great earthquake in western Nepal: historic inactivity and development strain. J Nepal Geol Soc 11:73–88

    Google Scholar 

  • Bilham R, Larson K, Freymueller J, IDYLHIM members (1997) GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386:1–94

    Article  Google Scholar 

  • Cannizzaro L (2008) Analysis of temporal correlations in GPS time series: comparison between different methods at different space scale. PhD Thesis in Geodesy and Geomatics, Polytechnic of Milan

  • Célérier J, Harrison TM, Yin A, Webb AAG (2009) The Kumaun and Garwhal Lesser Himalaya, India. Part 1: structure and stratigraphy. Geol Soc Am Bull 121((9-10)):1262–1280

    Article  Google Scholar 

  • Chauveau J, Rousseau D, Chapeau-Blondeau F (2010) Fractal capacity dimension of three-dimensional histogram from color images. Multidimens Syst Signal Process 1:197–211

    Article  Google Scholar 

  • Copley A (2008) Kinematics and dynamics of the southeastern margin of the Tibetan Plateau. Geophys J Int 174:1081–1100

    Article  Google Scholar 

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, Switzerland

  • Dasgupta S, Pande P, Ganguly D, Iqbal Z, Sanyal K, Venkatraman NV et al (2000) Seismotectonic atlas of india and its environs, Geological Survey India, Calcutta

  • Dumka RK, Kotlia BS, Kumar K, Satyal GS, Joshi LM (2014) Crustal deformation revealed by GPS in Kumaun Himalaya, India. J Mount Sci 11(1):41–50

    Article  Google Scholar 

  • Feder J (1988) Fractals. Plenum, New York

    Book  Google Scholar 

  • Gahalaut VK, Nagarajan B, Catherine JK, Kumar S (2006) Constraints on 2004 Sumatra–Andaman earthquake rupture from GPS measurements in Andaman–Nicobar Islands. Earth Planet Sci Lett 242:61–68

    Article  Google Scholar 

  • Gahalaut VK, Kundu B, Laishram SS, Catherine J, Kumar A, Singh MD, Tiwari RP, Chadha RK, Samanta SK, Ambikapathy A, Mahesh P, Bansal A, Narsaiah M (2013) Aseismic plate boundary in the Indo-Burmese wedge, northwest Sunda Arc. Geology 41(2):235–238

    Article  Google Scholar 

  • Gonzato G, Mulargia F, Marzocchi W (1998) Practical application of fractal analysis: problems and solutions. Geophys J Int 132:275–282

    Article  Google Scholar 

  • Hirata T (1989) Fractal dimension of fault systems in Japan: fractal structure in rock fracture geometry at various scales. Pure appl Geophys 131:157–170

    Article  Google Scholar 

  • Hodges KV (2000) Tectonics of the Himalaya and south Tibet from two perspectives. Geol Soc Am Bull 112:324–350

    Article  Google Scholar 

  • Jade S (2004) Estimates of plate velocity and crustal deformation in the Indian subcontinent using GPS geodesy. Curr Sci 86:1443–1448

    Google Scholar 

  • Jade S, Malay Mukul, Kumar Bhattacharya Anjan, Vijayan MSM, Saigeetha Jaganathan, Ashok Kumar, Tiwari RP, Arun Kumar, Kalita S, Sahu SC, Krishna AP, Gupta SS, Murthy MVRL, Gaur VK (2007) Estimates of interseismic deformation in northeast India from GPS measurements. Earth Planet Sci Lett 263:221–234. doi:10.1016/j.epsl.2007.1008.1031

    Article  Google Scholar 

  • Jade S, Rao HR, Vijayan MSM, Gaur VK, Bhatt BC, Kumar K, Jaganathan S, Ananda MB, Kumar PD (2011) GPS-derived deformation rates in northwestern Himalaya and Ladakh. Int J Earth Sci (Geol Rundsch) 100:1293–1301

    Article  Google Scholar 

  • Jouanne F, Mugnier JL, Pandey MR, Gamond JF, Le Fort P, Serrurier L, Vigney C, Avouac JP (1999) Oblique convergence in the Himalayas of western Nepal deduced from preliminary results of GPS measurements. Geophys Res Lett 26(13):1933–1936

    Article  Google Scholar 

  • Jouanne F, Mugnier JL, Gamond JF, Le Fort P, Pandey MR, Bollinger L, Flouzat M, Avouac JP (2004) Current shortening across the Himalayas of Nepal. Geophy J Int 57:1–14. doi:10.111/j.1365-246X.2004.02180.x

    Article  Google Scholar 

  • Kaniuth K, Vetter S (2005) Vertical velocities of European coastal sites derived from continuous GPS observations. GPS Solut 9:32–40

    Article  Google Scholar 

  • Khattri KN (1987) Great earthquakes, seismicity gaps and potential for earthquake disaster along Himalaya plate boundary. In: Mogi K, Khattri KN (ed). Earthquake prediction. Tectonophysics 138:79–92

  • Korvin G (1992) Fractal models in the earth sciences. Elsevier, Amsterdam

    Google Scholar 

  • Kothyari GC, Pant PD (2008) Evidences of active deformation in the northwestern part of Almora in Kumaun Lesser Himalaya: a geomorphic perspective. J Geol Soc India 72:353–364

    Google Scholar 

  • Kumar S, Wesnosusky WG, Rockwell TK, Ragona D, Thakur VC, Seitz GG (2001) Earthquake recurrence and rupture dynamics of Himalayan Frontal Thrust, India. Science 294:2328–2331

    Article  Google Scholar 

  • Kumar S, Wenousky SG, Rockwell TK, Briggs RW, Thakur VC, Jayangondaperumal R (2006) Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya. J Geophys Res 111:B03304

    Google Scholar 

  • Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Mandelbrot BB (1985) Self-affine fractals and fractal dimension. Phys Scr 32:257–260

    Article  Google Scholar 

  • Ni J, Barazangi M (1984) Seismotectonics of the Himalayan collision zone: geometry of the underthrusting Indian plate beneath the Himalaya. J Geophys Res 89(B2):1147–1163

    Article  Google Scholar 

  • Ogata Y (1999) Seismicity analysis through point-process modeling: a review. Pure App Geophys 155:471–507

    Article  Google Scholar 

  • Paul A, Sharma ML (2011) Recent earthquake swarms in Garhwal Himalaya: a precursor to moderate to great earthquakes in the region. J Asian Earth Sci 42:1179–1186

    Article  Google Scholar 

  • Paul J, Burgmann R, Gaur VK, Bilham R, Larson KM, Ananda MB, Jade S, Mukul M, Anupama TS, Satyal G, Kumar D (2001) The motion and active deformation of India. Geophys Res Lett 28(4):647–650

    Article  Google Scholar 

  • Peltzer G, Saucier F (1996) Present day kinematics of Asia derived from geological fault rates. J Geophys Res 101:27943–27956

    Article  Google Scholar 

  • Ponraj M, Miura S, Reddy CD, Prajapati SK, Amirtharaj S, Mahajan SH (2010) Estimation of strain distribution using GPS measurements in the Kumaun region of Lesser Himalaya. J Asian Earth Sci 39:658–667. doi:10.1016/j.jseaes.2010.04.019

    Article  Google Scholar 

  • Ponraj M, Miura S, Reddy CD, Amrithraj S, Mahajan SH (2011) Slip distribution beneath the Central and Western Himalaya inferred from GPS measurements. Geophys J Int 85:724–736

    Article  Google Scholar 

  • Powell CM, Conaghan PJ (1973) Plate tectonics and the Himalayas. Earth Planet Sci Lett 20:1–12

    Article  Google Scholar 

  • Powers PM, Lillie RJ, Yeats RS (1998) Structure and shortening of the Kangra and Dehra Dun reentrants, Sub-Himalaya, India. Geol Soc Am Bull 110:1010–1027

    Article  Google Scholar 

  • Ram A, Roy PNS (2005) Fractal dimensions of blocks using a box-counting technique for the 2001 Bhuj Earthquake, Gujarat, India. Pure App Geophys 162:531–548

    Article  Google Scholar 

  • Rikitake T (1982) Earthquake Forecasting and Warning. D. Reidel Publishing Co, Dordrecht

    Google Scholar 

  • Sagiya T, Miyazaki S, Tada T (2000) Continuous GPS array and present-day crustal deformation of Japan. Pure appl Geophys 157:2303–2322

    Google Scholar 

  • Searle MP (1991) Geology and tectonics of the Karakoram Mountains. Wiley, New York

    Google Scholar 

  • Sunmonu LA, Dimri VP (2000) Fractal geometry and seismicity of Koyna–Warna, India. Pure appl Geophys 157:1393–1405

    Article  Google Scholar 

  • Thingbaijam KKS, Nath SK, Yadav A, Raj A, Walling MY, Mohanty WK (2008) Recent seismicity in Northeast India and its adjoining region. J Seismol 12:107–123

    Article  Google Scholar 

  • Turcotte DL (1989) Fractals in geology and geophysics. Pure appl Geophys 131:171–196

    Article  Google Scholar 

  • Turcotte DL (1997) Fractals and chaos in geology and geophysics, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Utsu T (1984) Estimation of parameters for recurrence models of earthquakes. Bull Earthq Res Inst Univ Tokyo 59:53–66

    Google Scholar 

  • Valdiya KS (2001) Reactivation of terrain defining boundary thrust in central sector of the Himalaya: implication. Curr Sci 81(11):1418–1431

    Google Scholar 

  • Valdiya KS, Joshi DD, Sanwal R, Tandon SK (1984) Geomorphological development across the active main boundary thrust: an example from the Nainital Hills in Kumaun Himalaya. J Geol Soc India 25:761–774

    Google Scholar 

  • Valdiya KS, Rana RS, Sharma PK, Dey P (1992) Active Himalayan frontal fault, main boundary thrust and Ramgarh Thrust in southern Kumaun. J Geol Soc India 40:509–528

    Google Scholar 

  • Verma M, Bansal BK (2012) Indian National GNSS Programme: crustal deformation measurements in the Indian Sub-continent. J Asian Earth Sci 50:1–6

    Article  Google Scholar 

  • Wesnousky SG, Kumar S (1999) Uplift and convergence along the Himalayan frontal thrust of India. Tectonic 18(6):967–976

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of the Generic mapping tools released. EOS Trans AGU 79:579

    Article  Google Scholar 

  • Wu JC, Tang HW, Chen YQ, Li YX (2006) The current strain distribution in the North China Basin of eastern China by least squares collocation. J Geodyn 41:462–470

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Ministry of Earth Science, Government of India for sponsoring the work by The Project (MoES/P.O. (Seismo)/GPS/60/2006).The Survey of India is acknowledged for the continuous sites data. We also acknowledge all the persons who helped in GPS data acquisition in Himalayan region. The Abdus Salam ICTP, Trieste, Italy, is acknowledged for Junior Associate support to PNSR. The authors acknowledge Paul Wessel and University of Hawaii for General Mapping Tools (Wessel and Smith 1998). The first author wishes to thank the Director, CSIR-National Geophysical Research Institute, Hyderabad for all the support for research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. S. Roy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2966 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S.K., Borghi, A., Roy, P.N.S. et al. GPS, scaling exponent and past seismicity for seismic hazard assessment in Garhwal–Kumaun, Himalayan region. Nat Hazards 80, 1349–1367 (2016). https://doi.org/10.1007/s11069-015-2026-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-2026-x

Keywords

Navigation