Skip to main content
Log in

Fractal capacity dimension of three-dimensional histogram from color images

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

To contribute to the important task of characterizing the complex multidimensional structure of natural images, a fractal characterization is proposed for the colorimetric organization of natural color images. This is realized from their three-dimensional RGB color histogram, by applying a box-counting procedure to assess the dimensionality of its support. Regular scaling emerges, almost linear over the whole range of accessible scales, and with non-integer slope in log-log allowing the definition of a capacity dimension for the histogram. This manifests a fractal colorimetric organization with a self-similar structure of the color palette typically composing natural images. Such a fractal characterization complements other previously known fractal properties of natural images, some reported recently in their colorimetric organization, and others reported more classically in their spatial organization. Such fractal multiscale features uncovered in natural images provide helpful clues relevant to image modeling, processing and visual perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batlle J., Casalsb A., Freixeneta J., Martía J. (2000) A review on strategies for recognizing natural objects in colour images of outdoor scenes. Image and Vision Computing 18: 515–530

    Article  Google Scholar 

  • Bex P. J., Makous W. (2002) Spatial frequency, phase, and the contrast of natural images. Journal of the Optical Society of America A 19: 1096–1106

    Article  Google Scholar 

  • Chapeau-Blondeau F., Chauveau J., Rousseau D., Richard P. (2009) Fractal structure in the color distribution of natural images. Chaos, Solitons & Fractals, 42: 472–482

    Article  Google Scholar 

  • Chauveau, J., Rousseau, D., & Chapeau-Blondeau, F. (2008). Pair correlation integral for fractal characterization of three-dimensional histograms from color images. In lecture notes in computer science, (vol. LNCS 5099, pp. 200–208). Berlin: Springer.

  • Chen Y. C., Ji Z., Hua C. (2008) Spatial adaptive Bayesian wavelet threshold exploiting scale and space consistency. Multidimensional Systems and Signal Processing 19: 157–170

    Article  MATH  MathSciNet  Google Scholar 

  • Distasi R., Nappi M., Tucci M. (2003) FIRE: Fractal indexing with robust extensions for image databases. IEEE Transactions on Image Processing 12: 373–384

    Article  Google Scholar 

  • Dong D. W., Atick J. J. (1995) Statistics of natural time-varying images. Network: Computation in Neural Systems 6: 345–358

    Article  MATH  Google Scholar 

  • Faraoun K. M., Boukelif A. (2005) Speeding up fractal image compression by genetic algorithms. Multidimensional Systems and Signal Processing 16: 217–236

    Article  MATH  Google Scholar 

  • Field D. J. (1987) Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America A 4: 2379–2394

    Article  Google Scholar 

  • Field D. J. (1994) What is the goal of sensory coding?. Neural Computation 6: 559–601

    Article  Google Scholar 

  • Fisher Y. (1995) Fractal image compression: Theory and applications. Springer, Berlin

    Google Scholar 

  • Galka A. (2000) Topics in nonlinear time series analysis. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Gevers T., Smeulders A. W. M. (1999) Color-based object recognition. Pattern Recognition 32: 453–464

    Article  Google Scholar 

  • Gousseau Y., Roueff F. (2007) Modeling occlusion and scaling in natural images. SIAM Journal of Multiscale Modeling and Simulation 6: 105–134

    Article  MATH  MathSciNet  Google Scholar 

  • Grassberger P., Procaccia I. (1983) Characterization of strange attractors. Physical Review Letters 50: 346–349

    Article  MathSciNet  Google Scholar 

  • Hentschel H. G. E., Procaccia I. (1983) The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8: 435–444

    Article  MATH  MathSciNet  Google Scholar 

  • Hsiao W. H., Millane R. P. (2005) Effects of occlusion, edges, and scaling on the power spectra of natural images. Journal of the Optical Society of America A 22: 1789–1797

    Article  Google Scholar 

  • Jacquin A. E. (1992) Image coding based on a fractal theory of iterated contractive image transformation. IEEE Transactions on Image Processing 1: 18–30

    Article  Google Scholar 

  • Kaplan L. M. (1999) Extended fractal analysis for texture classification and segmentation. IEEE Transactions on Image Processing 8: 1572–1585

    Article  Google Scholar 

  • Keller J. M., Crownover R. M., Chen R. Y. (1987) Characteristics of natural scenes related to the fractal dimension. IEEE Transactions on Pattern Analysis and Machine Intelligence 9: 621–627

    Article  Google Scholar 

  • Knill D. C., Field D., Kersten D. (1990) Human discrimination of fractal images. Journal of the Optical Society of America A 7: 1113–1123

    Article  Google Scholar 

  • Landgrebe D. (2002) Hyperspectral image data analysis. IEEE Signal Processing Magazine 19(1): 17–28

    Article  Google Scholar 

  • Lian S. (2008) Image authentication based on fractal features. Fractals 16: 287–297

    Article  MATH  MathSciNet  Google Scholar 

  • Maggi F., Winterwerp J.C. (2004) Method for computing the three-dimensional capacity dimension from two-dimensional projections of fractal aggregates. Physical Review E, 69(011405): 1–8

    Google Scholar 

  • Mandelbrot B. B. (1983) The fractal geometry of nature. Freeman, San Francisco

    Google Scholar 

  • Olshausen B. A., Field D. J. (2000) Vision and the coding of natural images. American Scientist 88: 238–245

    Google Scholar 

  • Pentland A. P. (1984) Fractal-based description of natural scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 6: 661–674

    Article  Google Scholar 

  • Pesquet-Popescu B., Lévy Véhel J. (2002) Stochastic fractal models for image processing. IEEE Signal Processing Magazine 19(5): 48–62

    Article  Google Scholar 

  • Potlapalli H., Luo R. C. (1998) Fractal-based classification of natural textures. IEEE Transactions on Industrial Electronics 45: 142–150

    Article  Google Scholar 

  • Ruderman D. L. (1997) Origins of scaling in natural images. Vision Research 37: 3385–3398

    Article  Google Scholar 

  • Ruderman D. L., Bialek W. (1994) Statistics of natural images: Scaling in the woods. Physical Review Letters 73: 814–817

    Article  Google Scholar 

  • Schroeder M. (1999) Fractals, chaos, power laws. Freeman, New York

    Google Scholar 

  • Sharma, G. (eds) (2003) Digital color imaging handbook. CRC Press, Boca Raton

    Google Scholar 

  • Srivastava A., Lee A. B., Simoncelli E. P., Zhu S. C. (2003) On advances in statistical modeling of natural images. Journal of Mathematical Imaging and Vision 18: 17–33

    Article  MATH  MathSciNet  Google Scholar 

  • Theiler J. (1990) Estimating fractal dimension. Journal of the Optical Society of America A 7: 1055–1073

    Article  MathSciNet  Google Scholar 

  • Tolhurst D. J., Tadmor Y., Chao T. (1992) Amplitude spectra of natural images. Ophthalmic and Physiological Optics 12: 229–232

    Article  Google Scholar 

  • Truong T. K., Kung C. M., Jeng J. H., Hsieh M. L. (2004) Fast fractal image compression using spatial correlation. Chaos, Solitons & Fractals 22: 1071–1076

    Article  MATH  Google Scholar 

  • Wohlberg B., De Jager G. (1999) A review of the fractal image coding literature. IEEE Transactions on Image Processing 8: 1716–1729

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Chapeau-Blondeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauveau, J., Rousseau, D. & Chapeau-Blondeau, F. Fractal capacity dimension of three-dimensional histogram from color images. Multidim Syst Sign Process 21, 197–211 (2010). https://doi.org/10.1007/s11045-009-0097-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-009-0097-0

Keywords

Navigation