Skip to main content
Log in

Adenosine as a Key Mediator of Neuronal Survival in Cerebral Ischemic Injury

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Several experimental studies have linked adenosine’s neuroprotective role in cerebral ischemia. During ischemia, adenosine is formed due to intracellular ATP breakdown into ADP, further when phosphate is released from ADP, the adenosine monophosphate is formed. It acts via A1, A2, and A3 receptors found on neurons, blood vessels, glial cells, platelets, and leukocytes. It is related to various effector systems such as adenyl cyclase and membrane ion channels via G-proteins. Pharmacological manipulation of adenosine receptors by agonists (CCPA, ADAC, IB-MECA) increases ischemic brain damage in various in vivo and in vitro models of cerebral ischemia whereas, agonist can also be neuroprotective. Mainly, receptor antagonists (CGS15943, MRS1706) indicated neuroprotection. Later, various studies also revealed that the downregulation or upregulation of specific adenosine receptors is necessary during the recovery of cerebral ischemia by activating several downstream signaling pathways. In the current review, we elaborate on the dual roles of adenosine and its receptor subtypes A1, A2, and A3 and their involvement in the pathobiology of cerebral ischemic injury. Adenosine-based therapies have the potential to improve the outcomes of cerebral injury patients, thereby providing them with a more optimistic future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

ADAC:

Agonist adenosine amine congener

ATP:

Adenosine triphosphate

ADP:

Adenosine diphosphate

cAMP:

Cyclic adenosine monophosphate

CBF:

Cerebral blood flow

ERK 1/2:

Extracellular signal-regulated protein kinase ½

GPCR:

G-protein coupled receptor

iNOS:

Inducible nitric oxide synthase

MAP-2:

Microtubule-associated protein-2

NMDA:

N-Methyl-d-aspartate

NO:

Nitric oxide

OGD:

Oxygen glucose deprivation

P13K:

Phosphoinositide 3-kinase pathway

p38 MAPK:

P38 mitogen-activated protein kinase

R-PIA:

R-phenyl isopropyl-adenosine

TNF-α:

Tumour necrosis factor-alpha

TSG:

Tetrahydroxy stilbene glycoside

References

  1. Adair TH (2005) Growth regulation of the vascular system: an emerging role for adenosine. Am J Physiol Regul Integr Comp Physiol 289(2):R283–R296. https://doi.org/10.1152/ajpregu.00840.2004

    Article  PubMed  CAS  Google Scholar 

  2. Anrather J, Iadecola C (2016) Inflammation and stroke an overview. Neurotherapeutics 13(4):661–670. https://doi.org/10.1007/s13311-016-0483-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Khan H, Grewal AK, Singh TG (2022) Mitochondrial dynamics related neurovascular approaches in cerebral ischemic injury. Mitochondrion. https://doi.org/10.1016/j.mito.2022.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  4. Prabhakar NK, Khan H, Grewal AK, Singh TG (2022) Intervention of neuroinflammation in the traumatic brain injury trajectory: in vivo and clinical approaches. Int Immunopharmacol 108:108902. https://doi.org/10.1016/j.intimp.2022.108902

    Article  PubMed  CAS  Google Scholar 

  5. Boison D, Chen JF, Fredholm BB (2010) Adenosine signaling and function in glial cells. Cell Death Differ 17(7):1071–1082. https://doi.org/10.1038/cdd.2009.131

    Article  PubMed  CAS  Google Scholar 

  6. Brambilla R, Cottini L, Fumagalli M, Ceruti S, Abbracchio MP (2003) Blockade of A2A adenosine receptors prevents basic fibroblast growth factor induced reactive astrogliosis in rat striatal primary astrocytes. Glia 43(2):190–194. https://doi.org/10.1002/glia.10243

    Article  PubMed  Google Scholar 

  7. Brodie C, Blumberg PM, Jacobson KA (1998) Activation of the A2A adenosine receptor inhibits nitric oxide production in glial cells. FEBS Lett 429(2):139–142. https://doi.org/10.1016/S0014-5793(98)00556-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Castillo A, Tolón MR, Fernández-Ruiz J, Romero J, Martinez-Orgado J (2010) The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic–ischemic brain damage in mice is mediated by CB2 and adenosine receptors. Neurobiol Dis 37(2):434–440. https://doi.org/10.1016/j.nbd.2009.10.023

    Article  PubMed  CAS  Google Scholar 

  9. Chen GJ, Harvey BK, Shen H, Chou J, Victor A, Wang Y (2006) Activation of adenosine A3 receptors reduces ischemic brain injury in rodents. J Neurosci Res 84(8):1848–1855. https://doi.org/10.1002/jnr.21071

    Article  PubMed  CAS  Google Scholar 

  10. Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314(5806):1792–1795. https://doi.org/10.1016/j.ejphar.2022.174874

    Article  PubMed  CAS  Google Scholar 

  11. Coelho JE, Rebola N, Fragata I, Ribeiro JA, De Mendonça A, Cunha RA (2006) Hypoxia-induced desensitization and internalization of adenosine A1 receptors in the rat hippocampus. Neuroscience 138(4):1195–1203. https://doi.org/10.1016/j.neuroscience.2005.12.012

    Article  PubMed  CAS  Google Scholar 

  12. Coppi E, Dettori I, Cherchi F, Bulli I, Venturini M, Lana D, Giovannini MG, Pedata F, Pugliese AM (2020) A2B adenosine receptors: when outsiders may become an attractive target to treat brain ischemia or demyelination. Int J Mol Sci 21(24):9697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cormier RJ, Mennerick S, Melbostad H, Zorumski CF (2001) Basal levels of adenosine modulate mGluR5 on rat hippocampal astrocytes. Glia 33(1):24–35. https://doi.org/10.1002/1098-1136(20010101)33:1%3C24::AID-GLIA1003%3E3.0.CO;2-L

    Article  PubMed  CAS  Google Scholar 

  14. Corset V, Nguyen-Ba-Charvet KT, Forcet C, Moyse E, Chédotal A, Mehlen P (2000) Netrin-1-mediated axon outgrowth and cAMP production requires interaction with adenosine A2b receptor. Nature 407(6805):747–750. https://doi.org/10.1038/35037600

    Article  PubMed  CAS  Google Scholar 

  15. Crack PJ, Wong CH (2008) Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury. Curr Med Chem 15(1):1–4. https://doi.org/10.2174/092986708783330665

    Article  PubMed  Google Scholar 

  16. Cui M, Bai X, Li T, Chen F, Dong Q, Zhao Y, Liu X (2013) Decreased extracellular adenosine levels lead to loss of hypoxia-induced neuroprotection after repeated episodes of exposure to hypoxia. PLoS ONE 8(2):e57065. https://doi.org/10.1371/journal.pone.0057065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles different sources and different receptors. Neurochem Int 38(2):107–125. https://doi.org/10.1016/S0197-0186(00)00034-6

    Article  PubMed  CAS  Google Scholar 

  18. AlimonteI D, Ballerini P, Nargi E, Buccella S, Giuliani P, Di Iorio P, Caciagli F, Ciccarelli R (2007) Staurosporine-induced apoptosis in astrocytes is prevented by A1 adenosine receptor activation. Neurosci Lett 418(1):66–71

    Article  Google Scholar 

  19. Khan H, Bangar A, Grewal AK, Bansal P, Singh TG (2022) Caspase-mediated regulation of the distinct signaling pathways and mechanisms in neuronal survival. Int Immunopharmacol 110:108951. https://doi.org/10.1016/j.intimp.2022.108951

    Article  PubMed  CAS  Google Scholar 

  20. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758. https://doi.org/10.1038/nn1472

    Article  PubMed  CAS  Google Scholar 

  21. Dennis SH, Jaafari N, Cimarosti H, Hanley JG, Henley JM, Mellor JR (2011) Oxygen glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGluR1 and adenosine A3 receptors. J Neurosci 31(33):11941–11952. https://doi.org/10.1523/JNEUROSCI.1183-11.201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Gupta A, Khan H, Kaur A, Singh TG (2021) Novel targets explored in the treatment of alcohol withdrawal syndrome. CNS Neurol Disord Drug Targets 20(2):158–173. https://doi.org/10.2174/1871527319999201118155721

    Article  PubMed  CAS  Google Scholar 

  23. Evans MC, Swan JH, Meldrum BS (1987) An adenosine analogue, 2-chloroadenosine, protects against long term development of ischaemic cell loss in the rat hippocampus. Neurosci Lett 83(3):287–292. https://doi.org/10.1016/0304-3940(87)90101-7

    Article  PubMed  CAS  Google Scholar 

  24. Fiebich BL, Biber K, Lieb K, Van Calker D, Berger M, Bauer J, Gebicke-Haerter PJ (1996) Cyclooxygenase 2 expression in rat microglia is induced by adenosine A2a receptors. Glia 18(2):152–180. https://doi.org/10.1002/(SICI)1098-1136(199610)18:2%3C152::AID-GLIA7%3E3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  25. Fishman P, Bar-Yehuda S, Liang BT, Jacobson KA (2012) Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov 17(7–8):359–366. https://doi.org/10.1016/j.drudis.2011.10.007

    Article  CAS  Google Scholar 

  26. Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W (2000) Structure and function of adenosine receptors and their genes. Naunyn Schmiedeb Arch Pharmacol. 362(4):364–374. https://doi.org/10.1007/s002100000313

    Article  CAS  Google Scholar 

  27. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International union of pharmacology nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552

    PubMed  CAS  Google Scholar 

  28. Frenguelli BG, Wigmore G, Llaudet E, Dale N (2007) Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus 1. J Neurochem 101(5):1400–1413. https://doi.org/10.1111/j.1471-4159.2006.04425.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gao Y, Phillis JW (1994) CGS 15943 an adenosine A2 receptor antagonist reduces cerebral ischemic injury in the Mongolian gerbil. Life Sci. https://doi.org/10.1016/0024-3205(94)00889-2

    Article  PubMed  Google Scholar 

  30. Gao ZG, Kim SK, IJzerman AP, Jacobson KA (2005) Allosteric modulation of the adenosine family of receptors. Mini Rev Med Chem 5(6):545–553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Garg C, Kaur A, Singh TG, Sharma VK, Singh SK (2022) Therapeutic implications of sonic hedgehog pathway in metabolic disorders novel target for effective treatment. Pharmacol Res. https://doi.org/10.1016/j.phrs.2022.106194

    Article  PubMed  Google Scholar 

  32. Ginsberg MD (2009) Current status of neuroprotection for cerebral ischemia synoptic overview. J Stroke. https://doi.org/10.1161/STROKEAHA.108.528877

    Article  Google Scholar 

  33. Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S, Gessi S (2015) The A3 adenosine receptor: history and perspectives. Pharmacol Rev 67(1):74–102. https://doi.org/10.1124/pr.113.008540

    Article  PubMed  CAS  Google Scholar 

  34. Borea PA, Gessi S, Merighi S, Varani K (2016) Adenosine as a multi-signalling guardian angel in human diseases: when, where and how does it exert its protective effects? Trends Pharmacol Sci 37(6):419–434. https://doi.org/10.1016/j.tips.2016.02.006

    Article  PubMed  CAS  Google Scholar 

  35. Petrovic-Djergovic D, Hyman MC, Ray JJ, Bouis D, Visovatti SH, Hayasaki T, Pinsky DJ (2012) Tissue-resident ecto-5′ nucleotidase (CD73) regulates leukocyte trafficking in the ischemic brain. J Immunol 188(5):2387–2398. https://doi.org/10.4049/jimmunol.1003671

    Article  PubMed  CAS  Google Scholar 

  36. Antonioli L, Pacher P, Vizi ES, Haskó G (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19(6):355–367. https://doi.org/10.1016/j.molmed.2013.03.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Meghji P, Tuttle JB, Rubio R (1989) Adenosine formation and release by embryonic chick neurons and glia in cell culture. J Neurochem 53(6):1852–1860. https://doi.org/10.1111/j.1471-4159.1989.tb09252.x

    Article  PubMed  CAS  Google Scholar 

  38. Chen Y, Stone TW (1991) Release of endogenous adenosine and related purines from the rat hippocampus in vivo. Br J Pharmacol 104:76

    Google Scholar 

  39. Hoehn K, White TD (1990) Glutamate-evoked release of endogenous adenosine from rat cortical synaptosomes is mediated by glutamate uptake and not by receptors. J Neurochem 54(5):1716–1724. https://doi.org/10.1111/j.1471-4159.1990.tb01226.x

    Article  PubMed  CAS  Google Scholar 

  40. Khan H, Garg N, Singh TG, Kaur A, Thapa K (2022) Calpain inhibitors as potential therapeutic modulators in neurodegenerative diseases. Neurochem Res. https://doi.org/10.1007/s11064-021-03521-9

    Article  PubMed  Google Scholar 

  41. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K (2018) Pharmacology of adenosine receptors: the state of the art. Physiol Rev 98(3):1591–1625. https://doi.org/10.1152/physrev.00049.2017

    Article  PubMed  CAS  Google Scholar 

  42. Ganesana M, Venton BJ (2018) Early changes in transient adenosine during cerebral ischemia and reperfusion injury. PLoS ONE 13(5):e0196932. https://doi.org/10.1371/journal.pone.0196932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Speetzen LJ, Endres M, Kunz A (2013) Bilateral common carotid artery occlusion as an adequate preconditioning stimulus to induce early ischemic tolerance to focal cerebral ischemia. J Vis Exp 75:e4387. https://doi.org/10.3791/4387

    Article  Google Scholar 

  44. Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases neuroprotection and neuro degeneration. Biochim Biophys Acta Biomembr 1808(5):1380–1399. https://doi.org/10.1016/j.bbamem.2010.12.001

    Article  CAS  Google Scholar 

  45. Graham SH, Chen J (2001) Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab 21(2):99–109. https://doi.org/10.1097/00004647-200102000-00001

    Article  PubMed  CAS  Google Scholar 

  46. Hammarberg C, Fredholm BB, Schulte G (2004) Adenosine A3 receptor mediated regulation of p38 and extracellular regulated kinase ERK1/2 via phosphatidylinositol 3 kinase. Biochem Pharmacol 67(1):129–134. https://doi.org/10.1016/j.bcp.2003.08.031

    Article  PubMed  CAS  Google Scholar 

  47. Haskó G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7(9):759–770. https://doi.org/10.1038/nrd2638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512–1519. https://doi.org/10.1038/nn1805

    Article  PubMed  CAS  Google Scholar 

  49. Heese K, Fiebich BL, Bauer J, Otten U (1997) Nerve growth factor NGF expression in rat microglia is induced by adenosine A2a receptors. Neurosci Lett 231(2):83–86. https://doi.org/10.1016/S0304-3940(97)00545-4

    Article  PubMed  CAS  Google Scholar 

  50. Hindley S, Herman MA, Rathbone MP (1994) Stimulation of reactive astrogliosis in vivo by extracellular adenosine diphosphate or an adenosine A2 receptor agonist. J Neurosci Res 38(4):399–406. https://doi.org/10.1002/jnr.490380405

    Article  PubMed  CAS  Google Scholar 

  51. Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49(6):823–832. https://doi.org/10.1016/j.neuron.2006.02.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Jurcau A, Ardelean IA (2021) Molecular pathophysiological mechanisms of ischemia/reperfusion injuries after recanalization therapy for acute ischemic stroke. J Integr Neurosci 20(3):727–744

    Article  PubMed  Google Scholar 

  53. Jurcau A (2021) Insights into the pathogenesis of neurodegenerative diseases focus on mitochondrial dysfunction and oxidative stress. Int J Mol Sci 22(21):11847. https://doi.org/10.3390/ijms222111847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kalra P, Khan H, Kaur A, Singh TG (2022) Mechanistic insight on autophagy modulated molecular pathways in cerebral ischemic injury from preclinical to clinical perspective. Neurochem Res. https://doi.org/10.1007/s11064-021-03500-0

    Article  PubMed  Google Scholar 

  55. Kapoor M, Harikumar S L, Grewal, AK (2014) Adenosine A2 receptor: novel target for the management of parkinsonism. Int J Pharm Phytopharmacological Res 4(3): 205–209

    Google Scholar 

  56. Khan H, Grewal AK, Singh TG (2022) Pharmacological postconditioning by protocatechuic acid attenuates brain injury in ischemia reperfusion mice model implications of nuclear factor erythroid 2 related factor pathway. Neuroscience 491:23–31. https://doi.org/10.1016/j.neuroscience.2022.03.016

    Article  PubMed  CAS  Google Scholar 

  57. Khan H, Gupta A, Singh TG, Kaur A (2021) Mechanistic insight on the role of leukotriene receptors in ischemic reperfusion injury. Pharmacol Rep 73(5):1240–1254. https://doi.org/10.1007/s43440-021-00258-8

    Article  PubMed  CAS  Google Scholar 

  58. Khan H, Kashyap A, Kaur A, Singh TG (2020) Pharmacological postconditioning a molecular aspect in ischemic injury. J Pharm Pharmacol 72(11):1513–1527. https://doi.org/10.1111/jphp.13336

    Article  PubMed  CAS  Google Scholar 

  59. Khan H, Sharma K, Kumar A, Kaur A, Singh TG (2022) Therapeutic implications of cyclooxygenase COX inhibitors in ischemic injury. Inflamm Res. https://doi.org/10.1007/s00011-022-01546-6

    Article  PubMed  Google Scholar 

  60. Khan H, Singh A, Thapa K, Garg N, Grewal AK, Singh TG (2021) Therapeutic modulation of the phosphatidylinositol 3 kinases PI3K pathway in cerebral ischemic injury. Brain Res J 1761:147399. https://doi.org/10.1016/j.brainres.2021.147399

    Article  CAS  Google Scholar 

  61. Kim JY, Park J, Chang JY, Kim SH, Lee JE (2016) Inflammation after ischemic stroke the role of leukocytes and glial cells. Exp Neurobiol 25(5):241

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kim M, Yu ZX, Fredholm BB, Rivkees SA (2005) Susceptibility of the developing brain to acute hypoglycemia involving A1 adenosine receptor activation. Am J Physiol Endocrinol Metab 289(4):E562–E569. https://doi.org/10.1152/ajpendo.00112.2005

    Article  PubMed  CAS  Google Scholar 

  63. Lai AY, Todd KG (2006) Microglia in cerebral ischemia molecular actions and interactions. Can J Physiol Pharmacol 84(1):49–59. https://doi.org/10.1139/Y05-143

    Article  PubMed  CAS  Google Scholar 

  64. Lambert CM, Roy M, Robitaille GA, Richard DE, Bonnet S (2010) HIF-1 inhibition decreases systemic vascular remodelling diseases by promoting apoptosis through a hexokinase 2 dependent mechanism. Cardiovasc Res 88(1):196–204. https://doi.org/10.1093/cvr/cvq152

    Article  PubMed  CAS  Google Scholar 

  65. Latini S, Pedata F (2001) Adenosine in the central nervous system release mechanisms and extracellular concentrations. J Neurochem 79(3):463–484. https://doi.org/10.1046/j.1471-4159.2001.00607.x

    Article  PubMed  CAS  Google Scholar 

  66. Lazarowski ER, Boucher RC (2009) Purinergic receptors in airway epithelia. Curr Opin Pharmacol 9(3):262–267. https://doi.org/10.1016/j.coph.2009.02.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Li XX, Nomura T, Aihara H, Nishizaki T (2001) Adenosine enhances glial glutamate efflux via A2a adenosine receptors. Life Sci 68(12):1343–1350. https://doi.org/10.1016/S0024-3205(00)01036-5

    Article  PubMed  CAS  Google Scholar 

  68. Lin L, Wang X, Yu Z (2016) Ischemia reperfusion injury in the brain mechanisms and potential therapeutic strategies. Biochem Pharmacol. https://doi.org/10.4172/2F2167-0501.1000213

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liston TE, Hama A, Boltze J, Poe RB, Natsume T, Hayashi I, Takamatsu H, Korinek WS, Lechleiter JD (2022) Adenosine A1R/A3R adenosine A1 and A3 receptor agonist AST004 reduces brain infarction in a nonhuman primate model of stroke. Stroke 53(1):238–248. https://doi.org/10.1161/STROKEAHA.121.036396

    Article  PubMed  CAS  Google Scholar 

  70. Martire A, Lambertucci C, Pepponi R, Ferrante A, Benati N, Buccioni M, Dal Ben D, Marucci G, Klotz KN, Volpini R, Popoli P (2019) Neuroprotective potential of adenosine A1 receptor partial agonists in experimental models of cerebral ischemia. J Neurochem 149(2):211–230

    Article  PubMed  CAS  Google Scholar 

  71. McKenna WL, Wong-Staal C, Kim GC, Macias H, Hinck L, Bartoe JL (2008) Netrin 1 independent adenosine A2b receptor activation regulates the response of axons to netrin 1 by controlling cell surface levels of UNC5A receptors. J Neurochem 104(4):1081–1090. https://doi.org/10.1111/j.1471-4159.2007.05040.x

    Article  PubMed  CAS  Google Scholar 

  72. Melani A, Gianfriddo M, Vannucchi MG, Cipriani S, Baraldi PG, Giovannini MG, Pedata F (2006) The selective A2A receptor antagonist SCH 58261 protects from neurological deficit brain damage and activation of p38 MAPK in rat focal cerebral ischemia. Brain Res J 1073:470–480. https://doi.org/10.1016/j.brainres.2005.12.010

    Article  CAS  Google Scholar 

  73. Melani A, Pantoni L, Bordoni F, Gianfriddo M, Bianchi L, Vannucchi MG, Bertorelli R, Monopoli A, Pedata F (2003) The selective A2A receptor antagonist SCH 58261 reduces striatal transmitter outflow turning behavior and ischemic brain damage induced by permanent focal ischemia in the rat. Brain Res J 959(2):243–250. https://doi.org/10.1016/S0006-8993(02)03753-8

    Article  CAS  Google Scholar 

  74. Milton SL, Nayak G, Kesaraju S, Kara L, Prentice HM (2007) Suppression of reactive oxygen species production enhances neuronal survival in vitro and in vivo in the anoxia tolerant turtle Trachemys scripta. J Neurochem 101(4):993–1001. https://doi.org/10.1111/j.1471-4159.2007.04466.x

    Article  PubMed  CAS  Google Scholar 

  75. Mohamed RA, Agha AM, Abdel-Rahman AA, Nassar NN (2016) Role of adenosine A2A receptor in cerebral ischemia reperfusion injury signaling to phosphorylated extracellular signal-regulated protein kinase pERK1/2. Neuroscience 314:145–159. https://doi.org/10.1016/j.neuroscience.2015.11.059

    Article  PubMed  CAS  Google Scholar 

  76. Nishizaki T, Nagai K, Nomura T, Tada H, Kanno T, Tozaki H, Li XX, Kondoh T, Kodama N, Takahashi E, Sakai N (2002) A new neuromodulatory pathway with a glial contribution mediated via A2a adenosine receptors. Glia 39(2):133–147. https://doi.org/10.1002/glia.10100

    Article  PubMed  CAS  Google Scholar 

  77. Othman T, Yan H, Rivkees SA (2003) Oligodendrocytes express functional A1 adenosine receptors that stimulate cellular migration. Glia 44(2):166–172. https://doi.org/10.1002/glia.10281

    Article  PubMed  Google Scholar 

  78. Peakman MC, Hill SJ (1994) Adenosine A2B receptor mediated cyclic AMP accumulation in primary rat astrocytes. Br J Pharmacol 111(1):191–198. https://doi.org/10.1111/j.1476-5381.1994.tb14043.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Phillis JW, Goshgarian HG (2001) Adenosine and neurotrauma therapeutic perspectives. Neurol Res 23(2–3):183–189. https://doi.org/10.1179/016164101101198316

    Article  PubMed  CAS  Google Scholar 

  80. Phillis JW (1995) The effects of selective A1 and A2a adenosine receptor antagonists on cerebral ischemic injury in the gerbil. Brain Res J 705(1–2):79–84. https://doi.org/10.1016/0006-8993(95)01153-6

    Article  CAS  Google Scholar 

  81. Pilitsis JG, Kimelberg HK (1998) Adenosine receptor mediated stimulation of intracellular calcium in acutely isolated astrocytes. Brain Res J 798(1–2):294–303. https://doi.org/10.1016/S0006-8993(98)00430-2

    Article  CAS  Google Scholar 

  82. Popoli P, Pepponi R (2012) Potential therapeutic relevance of adenosine A2B and A2A receptors in the central nervous system. CNS Neurol Disord Drug Targets 11(6):664–674. https://doi.org/10.2174/187152712803581100

    Article  PubMed  CAS  Google Scholar 

  83. Rehni AK, Singh TG, Bhateja P, Singh N, Arora S (2022) Involvement of cyclic adenosine diphosphoribose receptor activation in ischemic preconditioning induced protection in mouse brain. Brain Res J 1309:75–82

    Article  Google Scholar 

  84. Saklan P, Khan H, Gupta S, Kaur A, Singh TG (2022) Neuropeptides: potential neuroprotective agents in ischemic injury. Life Sci 288:120186. https://doi.org/10.1016/j.lfs.2021.120186

    Article  CAS  Google Scholar 

  85. Schwaninger M, Neher M, Viegas E, Schneider A, Spranger M (1997) Stimulation of interleukin 6 secretion and gene transcription in primary astrocytes by adenosine. J Neurochem 69(3):1145–1150. https://doi.org/10.1046/j.1471-4159.1997.69031145.x

    Article  PubMed  CAS  Google Scholar 

  86. Sheardown MJ, Knutsen LJ (1996) Unexpected neuroprotection observed with the adenosine A2A receptor agonist CGS 21680. Drug Dev Res 39(1):108–114. https://doi.org/10.1002/(SICI)1098-2299(19960901)39:1%3C108::AID-DDR8%3E3.0.CO;2-J

    Article  CAS  Google Scholar 

  87. Stein E, Zou Y, Poo MM, Tessier-Lavigne M (2001) Binding of DCC by netrin-1 to mediate axon guidance independent of adenosine A2B receptor activation. Science 291(5510):1976–1982. https://doi.org/10.1126/science.1059391

    Article  PubMed  CAS  Google Scholar 

  88. Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, Narasimhan P, Maier CM, Chan PH (2004) Neuronal death survival signaling pathways in cerebral ischemia. NeuroRx 1(1):17–25. https://doi.org/10.1602/neurorx.1.1.17

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ji XD, Kim YC, Ahern DG, Linden J, Jacobson KA (2001) [3H] MRS 1754, a selective antagonist radioligand for A2B adenosine receptors. Biochem Pharmacol 61(6):657–663. https://doi.org/10.1016/S0006-2952(01)00531-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Synowitz M, Glass R, Färber K, Markovic D, Kronenberg G, Herrmann K, Schnermann J, Nolte C, van Rooijen N, Kiwit J, Kettenmann H (2006) A1 adenosine receptors in microglia control glioblastoma host interaction. Cancer Res 66(17):8550–8557. https://doi.org/10.1158/0008-5472.CAN-06-0365

    Article  PubMed  CAS  Google Scholar 

  91. Tawfik HE, Schnermann J, Oldenburg PJ, Mustafa SJ (2005) Role of A1 adenosine receptors in regulation of vascular tone. Am J Physiol Heart Circ Physiol 288(3):H1411–H1416. https://doi.org/10.1152/ajpheart.00684.2004

    Article  PubMed  CAS  Google Scholar 

  92. Thapa K, Khan H, Singh TG, Kaur A (2021) Traumatic brain injury mechanistic insight on pathophysiology and potential therapeutic targets. J Mol Neurosci 71(9):1725–1742. https://doi.org/10.1007/s12031-021-01841-7

    Article  PubMed  CAS  Google Scholar 

  93. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267(5203):1456–1462. https://doi.org/10.1126/science.7878464

    Article  PubMed  CAS  Google Scholar 

  94. Trincavelli ML, Tonazzini I, Montali M, Abbracchio MP, Martini C (2008) Short term TNF Alpha treatment induced A2B adenosine receptor desensitization in human astroglial cells. J Cell Biochem 104(1):150–161. https://doi.org/10.1002/jcb.21611

    Article  PubMed  CAS  Google Scholar 

  95. Tsutsui S, Schnermann J, Noorbakhsh F, Henry S, Yong VW, Winston BW, Warren K, Power C (2004) A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci 24(6):1521–1529. https://doi.org/10.1523/JNEUROSCI.4271-03.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Lopes LV, Sebastiao MA, Ribeiro AJ (2011) Adenosine and related drugs in brain diseases present and future in clinical trials. Curr Top Med Chem 11(8):1087–1101. https://doi.org/10.2174/156802611795347591

    Article  PubMed  CAS  Google Scholar 

  97. Von Lubitz DK, Lin RC, Jacobson KA (1995) Cerebral ischemia in gerbils effects of acute and chronic treatment with adenosine A2A receptor agonist and antagonist. Eur J Pharmacol 287(3):295–302. https://doi.org/10.1016/0014-2999(95)00498-X

    Article  Google Scholar 

  98. Von Lubitz DK, Lin RC, Popik P, Carter MF, Jacobson KA (1994) Adenosine A3 receptor stimulation and cerebral ischemia. Eur J Pharmacol 263(1–2):59–67. https://doi.org/10.1016/0014-2999(94)90523-1

    Article  Google Scholar 

  99. Von Lubitz DK, Lin RS, Melman N, Ji XD, Carter MF, Jacobson KA (1994) Chronic administration of selective adenosine A1 receptor agonist or antagonist in cerebral ischemia. Eur J Pharmacol 256(2):161–167. https://doi.org/10.1016/0014-2999(94)90241-0

    Article  Google Scholar 

  100. Welch KM, Caplan LR, Siesjo BK, Weir B, Reis DJ (eds) (1997) Primer on cerebrovascular diseases. Gulf Professional Publishing, Oxford

    Google Scholar 

  101. Wittendorp MC, Boddeke HW, Biber K (2004) Adenosine A3 receptor induced CCL2 synthesis in cultured mouse astrocytes. Glia 46(4):410–418. https://doi.org/10.1002/glia.20016

    Article  PubMed  Google Scholar 

  102. Zhou M, Wang CM, Yang WL, Wang P (2013) Microglial CD14 activated by iNOS contributes to neuroinflammation in cerebral ischemia. Brain Res J 1506:105–114. https://doi.org/10.1016/j.brainres.2013.02.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, India, for providing the necessary facilities to carry out the research work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Conceived and designed the experiments: TGS. Analyzed the data: HK, TGS. Wrote the manuscript: HK, PK Editing of the Manuscript: AKG. Critically reviewed the article: TGS.

Corresponding author

Correspondence to Thakur Gurejet Singh.

Ethics declarations

Competing interests

There author have not any competing interest.

Ethical Approval

Not applicable.

Consent for Publication

All authors read and given their consent for the final manuscript.

Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Kaur, P., Singh, T.G. et al. Adenosine as a Key Mediator of Neuronal Survival in Cerebral Ischemic Injury. Neurochem Res 47, 3543–3555 (2022). https://doi.org/10.1007/s11064-022-03737-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03737-3

Keywords

Navigation