Skip to main content
Log in

The Emerging Role of Astrocytic Autophagy in Central Nervous System Disorders

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes act as “housekeeping cells” for maintaining cerebral homeostasis and play an important role in many disorders. Recent studies further highlight the contribution of autophagy to astrocytic functions, including astrogenesis, the astrocytic removal of neurotoxins or stressors, and astrocytic polarization. More importantly, genetic and pharmacological approaches have provided evidence that outlines the contributions of astrocytic autophagy to several brain disorders, including neurodegeneration, cerebral ischemia, and depression. In this study, we summarize the emerging role of autophagy in regulating astrocytic functions and discuss the contributions of astrocytic autophagy to different CNS disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization (2006) Neurological disorders: public health challenges. World Health Organization, Geneva

    Google Scholar 

  2. Verkhratskiĭ AN, Butt A (2013) Glial physiology and pathophysiology. Chichester, West Sussex, UK; Hoboken, NJ, USA: Wiley-Blackwell)

    Book  Google Scholar 

  3. Santello M, Toni N, Volterra A (2019) Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 22:154–166

    Article  PubMed  CAS  Google Scholar 

  4. Sofroniew MV (2020) Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. Trends Immunol 41:758–770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18:942–952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ha S, Jeong SH, Yi K, Chu JJ, Kim S, Kim EK, Yu SW (2019) Autophagy Mediates Astrogenesis in Adult Hippocampal Neural Stem Cells. Exp Neurobiol 28:229–246

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang C, Liang CC, Bian ZC, Zhu Y, Guan JL (2013) FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci 16:532–542

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hu ZL, Sun T, Lu M, Ding JH, Du RH, Hu G (2019) Kir6.1/K-ATP channel on astrocytes protects against dopaminergic neurodegeneration in the MPTP mouse model of Parkinson’s disease via promoting mitophagy. Brain Behav Immun 81:509–522

    Article  PubMed  CAS  Google Scholar 

  9. Motori E, Puyal J, Toni N, Ghanem A, Angeloni C, Malaguti M, Cantelli-Forti G, Berninger B, Conzelmann KK, Gotz M et al (2013) Inflammation-induced alteration of astrocyte mitochondrial dynamics requires autophagy for mitochondrial network maintenance. Cell Metab 18:844–859

    Article  PubMed  CAS  Google Scholar 

  10. Leleu I, Genete D, Desnoulez SS, Saidi N, Brodin P, Lafont F, Tomavo S, Pied S (2021) A noncanonical autophagy is involved in the transfer of Plasmodium-microvesicles to astrocytes. Autophagy, pp 1–16

  11. Shao L, Jiang GT, Yang XL, Zeng ML, Cheng JJ, Kong S, Dong X, Chen TX, Han S, Yin J et al (2021) Silencing of circIgf1r plays a protective role in neuronal injury via regulating astrocyte polarization during epilepsy. FASEB J 35:e21330

    Article  PubMed  CAS  Google Scholar 

  12. Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A, Gonzales E, Burchett JM, Schuler DR, Cirrito JR et al (2014) Enhancing astrocytic lysosome biogenesis facilitates Abeta clearance and attenuates amyloid plaque pathogenesis. J Neurosci 34:9607–9620

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lu SZ, Guo YS, Liang PZ, Zhang SZ, Yin S, Yin YQ, Wang XM, Ding F, Gu XS, Zhou JW (2019) Suppression of astrocytic autophagy by alphaB-crystallin contributes to alpha-synuclein inclusion formation. Transl Neurodegener 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  14. Qin AP, Liu CF, Qin YY, Hong LZ, Xu M, Yang L, Liu J, Qin ZH, Zhang HL (2010) Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy 6:738–753

    Article  PubMed  CAS  Google Scholar 

  15. Zhou XY, Luo Y, Zhu YM, Liu ZH, Kent TA, Rong JG, Li W, Qiao SG, Li M, Ni Y et al (2017) Inhibition of autophagy blocks cathepsins-tBid-mitochondrial apoptotic signaling pathway via stabilization of lysosomal membrane in ischemic astrocytes. Cell Death Dis 8:e2618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Liu X, Tian F, Wang S, Wang F, Xiong L (2018) Astrocyte Autophagy Flux Protects Neurons Against Oxygen-Glucose Deprivation and Ischemic/Reperfusion Injury. Rejuvenation Res 21:405–415

    Article  PubMed  CAS  Google Scholar 

  17. Shu X, Sun Y, Sun X, Zhou Y, Bian Y, Shu Z, Ding J, Lu M, Hu G (2019) The effect of fluoxetine on astrocyte autophagy flux and injured mitochondria clearance in a mouse model of depression. Cell Death Dis 10:577

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mizushima N (2018) A brief history of autophagy from cell biology to physiology and disease. Nat Cell Biol 20:521–527

    Article  PubMed  CAS  Google Scholar 

  19. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364

    Article  PubMed  CAS  Google Scholar 

  20. Hurley JH, Young LN (2017) Mechanisms of Autophagy Initiation. Annu Rev Biochem 86:225–244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Nakatogawa H (2013) Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem 55:39–50

    Article  PubMed  CAS  Google Scholar 

  22. Nascimbeni AC, Codogno P, Morel E (2017) Phosphatidylinositol-3-phosphate in the regulation of autophagy membrane dynamics. FEBS J 284:1267–1278

    Article  PubMed  CAS  Google Scholar 

  23. Proikas-Cezanne T, Takacs Z, Donnes P, Kohlbacher O (2015) WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J Cell Sci 128:207–217

    PubMed  CAS  Google Scholar 

  24. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M et al (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492

    Article  PubMed  CAS  Google Scholar 

  26. Kaufmann A, Beier V, Franquelim HG, Wollert T (2014) Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell 156:469–481

    Article  PubMed  CAS  Google Scholar 

  27. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282:37298–37302

    Article  PubMed  CAS  Google Scholar 

  28. Romanov J, Walczak M, Ibiricu I, Schuchner S, Ogris E, Kraft C, Martens S (2012) Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J 31:4304–4317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI, Tooze SA (2014) WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell 55:238–252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Tian X, Teng J, Chen J (2021) New insights regarding SNARE proteins in autophagosome-lysosome fusion. Autophagy 17:2680–2688

    Article  PubMed  CAS  Google Scholar 

  31. Itakura E, Kishi-Itakura C, Mizushima N (2012) The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:1256–1269

    Article  PubMed  CAS  Google Scholar 

  32. Zhao YG, Codogno P, Zhang H (2021) Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol 22:733–750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Nguyen TN, Padman BS, Usher J, Oorschot V, Ramm G, Lazarou M (2016) Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J Cell Biol 215:857–874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Vaites LP, Paulo JA, Huttlin EL, Harper JW (2018) Systematic Analysis of Human Cells Lacking ATG8 Proteins Uncovers Roles for GABARAPs and the CCZ1/MON1 Regulator C18orf8/RMC1 in Macroautophagic and Selective Autophagic Flux. Mol Cell Biol 38

  35. Khaminets A, Behl C, Dikic I (2016) Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends Cell Biol 26:6–16

    Article  PubMed  CAS  Google Scholar 

  36. Gustafsson AB, Dorn GW 2nd (2019) Evolving and Expanding the Roles of Mitophagy as a Homeostatic and Pathogenic Process. Physiol Rev 99:853–892

    Article  PubMed  CAS  Google Scholar 

  37. Florey O, Kim SE, Sandoval CP, Haynes CM, Overholtzer M (2011) Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol 13:1335–1343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Heckmann BL, Teubner BJW, Tummers B, Boada-Romero E, Harris L, Yang M, Guy CS, Zakharenko SS, Green DR (2019) LC3-Associated Endocytosis Facilitates beta-Amyloid Clearance and Mitigates Neurodegeneration in Murine Alzheimer’s Disease. Cell 178:536–551e514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S et al (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450:1253–1257

    Article  PubMed  CAS  Google Scholar 

  40. Gordon S (2016) Phagocytosis: An Immunobiologic Process. Immunity 44:463–475

    Article  PubMed  CAS  Google Scholar 

  41. Flannagan RS, Jaumouille V, Grinstein S (2012) The cell biology of phagocytosis. Annu Rev Pathol 7:61–98

    Article  PubMed  CAS  Google Scholar 

  42. Arandjelovic S, Ravichandran KS (2015) Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 16:907–917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Uribe-Querol E, Rosales C (2020) Phagocytosis: Our Current Understanding of a Universal Biological Process. Front Immunol 11:1066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Overholtzer M, Mailleux AA, Mouneimne G, Normand G, Schnitt SJ, King RW, Cibas ES, Brugge JS (2007) A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131:966–979

    Article  PubMed  CAS  Google Scholar 

  45. Martinez J, Malireddi RK, Lu Q, Cunha LD, Pelletier S, Gingras S, Orchard R, Guan JL, Tan H, Peng J et al (2015) Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol 17:893–906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Galluzzi L, Green DR (2019) Autophagy-Independent Functions of the Autophagy Machinery. Cell 177:1682–1699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T et al (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11:385–396

    Article  PubMed  CAS  Google Scholar 

  48. Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11:468–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lima JG, de Freitas Vinhas C, Gomes IN, Azevedo CM, dos Santos RR, Vannier-Santos MA, Veras PS (2011) Phagocytosis is inhibited by autophagic induction in murine macrophages. Biochem Biophys Res Commun 405:604–609

    Article  PubMed  CAS  Google Scholar 

  50. Lee JW, Nam H, Kim LE, Jeon Y, Min H, Ha S, Lee Y, Kim SY, Lee SJ, Kim EK et al (2019) TLR4 (toll-like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia. Autophagy 15:753–770

    Article  PubMed  CAS  Google Scholar 

  51. Zheng YR, Zhang XN, Chen Z (2019) Mitochondrial transport serves as a mitochondrial quality control strategy in axons: Implications for central nervous system disorders. Cns Neurosci Ther 25:876–886

    Article  PubMed  PubMed Central  Google Scholar 

  52. Stavoe AKH, Holzbaur ELF (2019) Autophagy in Neurons. Annu Rev Cell Dev Biol 35:477–500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Maday S, Holzbaur EL (2014) Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev Cell 30:71–85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Maday S, Wallace KE, Holzbaur EL (2012) Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 196:407–417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, Liu B, Chang C, Zhou T, Lippincott-Schwartz J et al (2015) Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell 57:456–466

    Article  PubMed  CAS  Google Scholar 

  56. Shim MS, Nettesheim A, Hirt J, Liton PB (2020) The autophagic protein LC3 translocates to the nucleus and localizes in the nucleolus associated to NUFIP1 in response to cyclic mechanical stress. Autophagy 16:1248–1261

    Article  PubMed  CAS  Google Scholar 

  57. Moruno-Manchon JF, Uzor NE, Ambati CR, Shetty V, Putluri N, Jagannath C, McCullough LD, Tsvetkov AS (2018) Sphingosine kinase 1-associated autophagy differs between neurons and astrocytes. Cell Death Dis 9:521

    Article  PubMed  PubMed Central  Google Scholar 

  58. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  PubMed  CAS  Google Scholar 

  59. Tydlacka S, Wang CE, Wang X, Li S, Li XJ (2008) Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons. J Neurosci 28:13285–13295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391

    Article  PubMed  CAS  Google Scholar 

  61. Shen W, Ganetzky B (2009) Autophagy promotes synapse development in Drosophila. J Cell Biol 187:71–79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    Article  PubMed  CAS  Google Scholar 

  63. Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100:15077–15082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, Sawada N, Yamada A, Mizushima N, Uchiyama Y et al (2008) The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19:4762–4775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P et al (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1125

    Article  PubMed  CAS  Google Scholar 

  66. Mellen MA, de la Rosa EJ, Boya P (2008) The autophagic machinery is necessary for removal of cell corpses from the developing retinal neuroepithelium. Cell Death Differ 15:1279–1290

    Article  PubMed  CAS  Google Scholar 

  67. Vazquez P, Arroba AI, Cecconi F, de la Rosa EJ, Boya P, de Pablo F (2012) Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells. Autophagy 8:187–199

    Article  PubMed  CAS  Google Scholar 

  68. Leeman DS, Hebestreit K, Ruetz T, Webb AE, McKay A, Pollina EA, Dulken BW, Zhao X, Yeo RW, Ho TT et al (2018) Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science 359:1277–1283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Li X, Jiang X, Gao Q, Zhao P (2021) FOXO3 Regulates Sevoflurane-Induced Neural Stem Cell Differentiation in Fetal Rats. Cell Mol Neurobiol

  70. Wang C, Yeo S, Haas MA, Guan JL (2017) Autophagy gene FIP200 in neural progenitors non-cell autonomously controls differentiation by regulating microglia. J Cell Biol 216:2581–2596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Santo EE, Paik J (2018) FOXO in Neural Cells and Diseases of the Nervous System. Curr Top Dev Biol 127:105–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Liang R, Ghaffari S (2018) Stem Cells Seen Through the FOXO Lens: An Evolving Paradigm. Curr Top Dev Biol 127:23–47

    Article  PubMed  CAS  Google Scholar 

  73. Audesse AJ, Dhakal S, Hassell LA, Gardell Z, Nemtsova Y, Webb AE (2019) FOXO3 directly regulates an autophagy network to functionally regulate proteostasis in adult neural stem cells.PLoS Genet15, e1008097

  74. Wetzel L, Blanchard S, Rama S, Beier V, Kaufmann A, Wollert T (2020) TECPR1 promotes aggrephagy by direct recruitment of LC3C autophagosomes to lysosomes. Nat Commun 11:2993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Mori F, Tanji K, Yoshimoto M, Takahashi H, Wakabayashi K (2002) Demonstration of alpha-synuclein immunoreactivity in neuronal and glial cytoplasm in normal human brain tissue using proteinase K and formic acid pretreatment. Exp Neurol 176:98–104

    Article  PubMed  CAS  Google Scholar 

  76. Braak H, Sastre M, Tredici D, K (2007) Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol 114:231–241

    Article  PubMed  CAS  Google Scholar 

  77. Croisier E, Graeber MB (2006) Glial degeneration and reactive gliosis in alpha-synucleinopathies: the emerging concept of primary gliodegeneration. Acta Neuropathol 112:517–530

    Article  PubMed  Google Scholar 

  78. Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285:9262–9272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Colombo E, Farina C (2016) Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol 37:608–620

    Article  PubMed  CAS  Google Scholar 

  80. Sofroniew MV (2015) Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 16:249–263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Giovannoni F, Quintana FJ (2020) The Role of Astrocytes in CNS Inflammation. Trends Immunol 41:805–819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Zheng Y, Zhou Z, Han F, Chen Z (2021) Special issue: Neuroinflammatory pathways as treatment targets in brain disorders autophagic regulation of neuroinflammation in ischemic stroke. Neurochem Int 148:105114

    Article  PubMed  CAS  Google Scholar 

  83. Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR et al (2016) NF-kappaB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell 164:896–910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Zhang Y, Li W, Zhu S, Jundoria A, Li J, Yang H, Fan S, Wang P, Tracey KJ, Sama AE et al (2012) Tanshinone IIA sodium sulfonate facilitates endocytic HMGB1 uptake. Biochem Pharmacol 84:1492–1500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wang J, Wu MY, Su H, Lu J, Chen X, Tan J, Lu JH (2019) iNOS Interacts with Autophagy Receptor p62 and is Degraded by Autophagy in Macrophages. Cells-Basel 8

  86. Sanmarco LM, Wheeler MA, Gutierrez-Vazquez C, Polonio CM, Linnerbauer M, Pinho-Ribeiro FA, Li Z, Giovannoni F, Batterman KV, Scalisi G et al (2021) Gut-licensed IFNgamma(+) NK cells drive LAMP1(+)TRAIL(+) anti-inflammatory astrocytes. Nature 590:473–479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Lee SY, Chung WS (2021) The roles of astrocytic phagocytosis in maintaining homeostasis of brains. J Pharmacol Sci 145:223–227

    Article  PubMed  CAS  Google Scholar 

  88. Morizawa YM, Hirayama Y, Ohno N, Shibata S, Shigetomi E, Sui Y, Nabekura J, Sato K, Okajima F, Takebayashi H et al (2017) Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat Commun 8:28

    Article  PubMed  PubMed Central  Google Scholar 

  89. Shrivastava SK, Dalko E, Delcroix-Genete D, Herbert F, Cazenave PA, Pied S (2017) Uptake of parasite-derived vesicles by astrocytes and microglial phagocytosis of infected erythrocytes may drive neuroinflammation in cerebral malaria. Glia 65:75–92

    Article  PubMed  Google Scholar 

  90. Batiuk MY, Martirosyan A, Wahis J, de Vin F, Marneffe C, Kusserow C, Koeppen J, Viana JF, Oliveira JF, Voet T et al (2020) Identification of region-specific astrocyte subtypes at single cell resolution. Nat Commun 11:1220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Bayraktar OA, Bartels T, Holmqvist S, Kleshchevnikov V, Martirosyan A, Polioudakis D, Ben Haim L, Young AMH, Batiuk MY, Prakash K et al (2020) Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat Neurosci 23:500–509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Fan YY, Huo J (2021) A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils? Neurochem Int 148:105080

    Article  PubMed  CAS  Google Scholar 

  94. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Fujita A, Yamaguchi H, Yamasaki R, Cui Y, Matsuoka Y, Yamada KI, Kira JI (2018) Connexin 30 deficiency attenuates A2 astrocyte responses and induces severe neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride Parkinson’s disease animal model. J Neuroinflammation 15:227

    Article  PubMed  PubMed Central  Google Scholar 

  96. Xu X, Zhang A, Zhu Y, He W, Di W, Fang Y, Shi X (2018) MFG-E8 reverses microglial-induced neurotoxic astrocyte (A1) via NF-kappaB and PI3K-Akt pathways. J Cell Physiol 234:904–914

    Article  PubMed  Google Scholar 

  97. Neal M, Luo J, Harischandra DS, Gordon R, Sarkar S, Jin H, Anantharam V, Desaubry L, Kanthasamy A, Kanthasamy A (2018) Prokineticin-2 promotes chemotaxis and alternative A2 reactivity of astrocytes. Glia 66:2137–2157

    Article  PubMed  PubMed Central  Google Scholar 

  98. Liu R, Cui J, Sun Y, Xu W, Wang Z, Wu M, Dong H, Yang C, Hong S, Yin S et al (2021) Autophagy deficiency promotes M1 macrophage polarization to exacerbate acute liver injury via ATG5 repression during aging. Cell Death Discov 7:397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Jin MM, Wang F, Qi D, Liu WW, Gu C, Mao CJ, Yang YP, Zhao Z, Hu LF, Liu CF (2018) A Critical Role of Autophagy in Regulating Microglia Polarization in Neurodegeneration. Front Aging Neurosci 10:378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Hammond SL, Bantle CM, Popichak KA, Wright KA, Thompson D, Forero C, Kirkley KS, Damale PU, Chong EKP, Tjalkens RB (2020) NF-kappaB Signaling in Astrocytes Modulates Brain Inflammation and Neuronal Injury Following Sequential Exposure to Manganese and MPTP During Development and Aging. Toxicol Sci 177:506–520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Paul S, Kashyap AK, Jia W, He YW, Schaefer BC (2012) Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-kappaB. Immunity 36:947–958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Niida M, Tanaka M, Kamitani T (2010) Downregulation of active IKK beta by Ro52-mediated autophagy. Mol Immunol 47:2378–2387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Shibata Y, Oyama M, Kozuka-Hata H, Han X, Tanaka Y, Gohda J, Inoue J (2012) p47 negatively regulates IKK activation by inducing the lysosomal degradation of polyubiquitinated NEMO. Nat Commun 3:1061

    Article  PubMed  Google Scholar 

  104. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9:453–457

    Article  PubMed  CAS  Google Scholar 

  105. Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J, Higgs R, Liu F, Malkani S, Bales KR et al (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 10:719–726

    Article  PubMed  CAS  Google Scholar 

  106. Chen LL, Wu JC, Wang LH, Wang J, Qin ZH, Difiglia M, Lin F (2012) Rapamycin prevents the mutant huntingtin-suppressed GLT-1 expression in cultured astrocytes. Acta Pharmacol Sin 33:385–392

    Article  PubMed  PubMed Central  Google Scholar 

  107. Perucho J, Gomez A, Munoz MP, de Yebenes JG, Mena MA, Casarejos MJ (2016) Trehalose rescues glial cell dysfunction in striatal cultures from HD R6/1 mice at early postnatal development. Mol Cell Neurosci 74:128–145

    Article  PubMed  CAS  Google Scholar 

  108. Settembre C, Annunziata I, Spampanato C, Zarcone D, Cobellis G, Nusco E, Zito E, Tacchetti C, Cosma MP, Ballabio A (2007) Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency. Proc Natl Acad Sci U S A 104:4506–4511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Di Malta C, Fryer JD, Settembre C, Ballabio A (2012) Autophagy in astrocytes: a novel culprit in lysosomal storage disorders. Autophagy 8:1871–1872

    Article  PubMed  PubMed Central  Google Scholar 

  110. Di Malta C, Fryer JD, Settembre C, Ballabio A (2012) Astrocyte dysfunction triggers neurodegeneration in a lysosomal storage disorder. Proc Natl Acad Sci U S A 109:E2334–2342

    Article  PubMed  PubMed Central  Google Scholar 

  111. Abounit S, Bousset L, Loria F, Zhu S, de Chaumont F, Pieri L, Olivo-Marin JC, Melki R, Zurzolo C (2016) Tunneling nanotubes spread fibrillar alpha-synuclein by intercellular trafficking of lysosomes. EMBO J 35:2120–2138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Tremblay ME, Cookson MR, Civiero L (2019) Glial phagocytic clearance in Parkinson’s disease. Mol Neurodegener 14:16

    Article  PubMed  PubMed Central  Google Scholar 

  113. Xia ML, Xie XH, Ding JH, Du RH, Hu G (2020) Astragaloside IV inhibits astrocyte senescence: implication in Parkinson’s disease. J Neuroinflammation 17:105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Chandrasekaran A, Dittlau KS, Corsi GI, Haukedal H, Doncheva NT, Ramakrishna S, Ambardar S, Salcedo C, Schmidt SI, Zhang Y et al (2021) Astrocytic reactivity triggered by defective autophagy and metabolic failure causes neurotoxicity in frontotemporal dementia type 3. Stem Cell Rep 16:2736–2751

    Article  CAS  Google Scholar 

  115. Kasprowska D, Machnik G, Kost A, Gabryel B (2017) Time-Dependent Changes in Apoptosis Upon Autophagy Inhibition in Astrocytes Exposed to Oxygen and Glucose Deprivation. Cell Mol Neurobiol 37:223–234

    Article  PubMed  CAS  Google Scholar 

  116. Gabryel B, Kost A, Kasprowska D, Liber S, Machnik G, Wiaderkiewicz R, Labuzek K (2014) AMP-activated protein kinase is involved in induction of protective autophagy in astrocytes exposed to oxygen-glucose deprivation. Cell Biol Int 38:1086–1097

    Article  PubMed  CAS  Google Scholar 

  117. Ni Y, Gu WW, Liu ZH, Zhu YM, Rong JG, Kent TA, Li M, Qiao SG, An JZ, Zhang HL (2018) RIP1K Contributes to Neuronal and Astrocytic Cell Death in Ischemic Stroke via Activating Autophagic-lysosomal Pathway. Neuroscience 371:60–74

    Article  PubMed  CAS  Google Scholar 

  118. Pengyue Z, Tao G, Hongyun H, Liqiang Y, Yihao D (2017) Breviscapine confers a neuroprotective efficacy against transient focal cerebral ischemia by attenuating neuronal and astrocytic autophagy in the penumbra. Biomed Pharmacother 90:69–76

    Article  PubMed  Google Scholar 

  119. Zhu C, Zhou Q, Luo C, Chen Y (2020) Dexmedetomidine Protects Against Oxygen-Glucose Deprivation-Induced Injury Through Inducing Astrocytes Autophagy via TSC2/mTOR Pathway. Neuromolecular Med 22:210–217

    Article  PubMed  CAS  Google Scholar 

  120. Zhang Y, Miao JM (2018) Ginkgolide K promotes astrocyte proliferation and migration after oxygen-glucose deprivation via inducing protective autophagy through the AMPK/mTOR/ULK1 signaling pathway. Eur J Pharmacol 832:96–103

    Article  PubMed  CAS  Google Scholar 

  121. Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, Wu F, Leng S, Chao J, Zhang JH et al (2018) Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy 14:1164–1184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Wang XS, Yue J, Hu LN, Tian Z, Zhang K, Yang L, Zhang HN, Guo YY, Feng B, Liu HY et al (2020) Activation of G protein-coupled receptor 30 protects neurons by regulating autophagy in astrocytes. Glia 68:27–43

    Article  PubMed  Google Scholar 

  123. Quintana DD, Garcia JA, Sarkar SN, Jun S, Engler-Chiurazzi EB, Russell AE, Cavendish JZ, Simpkins JW (2019) Hypoxia-reoxygenation of primary astrocytes results in a redistribution of mitochondrial size and mitophagy. Mitochondrion 47:244–255

    Article  PubMed  CAS  Google Scholar 

  124. Ongur D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A 95:13290–13295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Cotter D, Mackay D, Landau S, Kerwin R, Everall I (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58:545–553

    Article  PubMed  CAS  Google Scholar 

  126. Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14:1225–1236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Bernstein HG, Meyer-Lotz G, Dobrowolny H, Bannier J, Steiner J, Walter M, Bogerts B (2015) Reduced density of glutamine synthetase immunoreactive astrocytes in different cortical areas in major depression but not in bipolar I disorder. Front Cell Neurosci 9:273

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zhou X, Xiao Q, Xie L, Yang F, Wang L, Tu J (2019) Astrocyte, a Promising Target for Mood Disorder Interventions. Front Mol Neurosci 12:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP, Myers RM, Bunney WE Jr, Akil H, Watson SJ et al (2005) Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci U S A 102:15653–15658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Zheng ZH, Tu JL, Li XH, Hua Q, Liu WZ, Liu Y, Pan BX, Hu P, Zhang WH (2021) Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala. Brain Behav Immun 91:505–518

    Article  PubMed  CAS  Google Scholar 

  131. Du Preez A, Onorato D, Eiben I, Musaelyan K, Egeland M, Zunszain PA, Fernandes C, Thuret S, Pariante CM (2021) Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice. Brain Behav Immun 91:24–47

    Article  PubMed  CAS  Google Scholar 

  132. Zhang Q, Sun Y, He Z, Xu Y, Li X, Ding J, Lu M, Hu G (2020) Kynurenine regulates NLRP2 inflammasome in astrocytes and its implications in depression. Brain Behav Immun 88:471–481

    Article  PubMed  CAS  Google Scholar 

  133. Czeh B, Di Benedetto B (2013) Antidepressants act directly on astrocytes: evidences and functional consequences. Eur Neuropsychopharmacol 23:171–185

    Article  PubMed  CAS  Google Scholar 

  134. Fang Y, Ding X, Zhang Y, Cai L, Ge Y, Ma K, Xu R, Li S, Song M, Zhu H et al (2022) Fluoxetine inhibited the activation of A1 reactive astrocyte in a mouse model of major depressive disorder through astrocytic 5-HT2BR/beta-arrestin2 pathway. J Neuroinflammation 19:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Zschocke J, Zimmermann N, Berning B, Ganal V, Holsboer F, Rein T (2011) Antidepressant drugs diversely affect autophagy pathways in astrocytes and neurons–dissociation from cholesterol homeostasis. Neuropsychopharmacology 36:1754–1768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Borggrewe M, Grit C, Vainchtein ID, Brouwer N, Wesseling EM, Laman JD, Eggen BJL, Kooistra SM, Boddeke E (2021) Regionally diverse astrocyte subtypes and their heterogeneous response to EAE. Glia 69:1140–1154

    Article  PubMed  CAS  Google Scholar 

  137. Schirmer L, Schafer DP, Bartels T, Rowitch DH, Calabresi PA (2021) Diversity and Function of Glial Cell Types in Multiple Sclerosis. Trends Immunol 42:228–247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Taha DM, Clarke BE, Hall CE, Tyzack GE, Ziff OJ, Greensmith L, Kalmar B, Ahmed M, Alam A, Thelin EP et al (2022) Astrocytes display cell autonomous and diverse early reactive states in familial amyotrophic lateral sclerosis. Brain

  139. Bugiani M, Plug BC, Man JHK, Breur M, van der Knaap MS (2022) Heterogeneity of white matter astrocytes in the human brain. Acta Neuropathol 143:159–177

    Article  PubMed  Google Scholar 

  140. Kleshchevnikov V, Shmatko A, Dann E, Aivazidis A, King HW, Li T, Elmentaite R, Lomakin A, Kedlian V, Gayoso A et al (2022) Cell2location maps fine-grained cell types in spatial transcriptomics. Nat Biotechnol

  141. Kostuk EW, Cai J, Iacovitti L (2019) Subregional differences in astrocytes underlie selective neurodegeneration or protection in Parkinson’s disease models in culture. Glia 67:1542–1557

    PubMed  PubMed Central  Google Scholar 

  142. Gomez JA, Perkins JM, Beaudoin GM, Cook NB, Quraishi SA, Szoeke EA, Thangamani K, Tschumi CW, Wanat MJ, Maroof AM et al (2019) Ventral tegmental area astrocytes orchestrate avoidance and approach behavior. Nat Commun 10:1455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (82003727, 81872844), the Zhejiang Provincial Natural Science Foundation (LQ21H310002), and the Opening Project of the Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University (No. 2021E10014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanrong Zheng.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhuchen Zhou and Jing Zhou contributed equally to this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhou, J., Liao, J. et al. The Emerging Role of Astrocytic Autophagy in Central Nervous System Disorders. Neurochem Res 47, 3697–3708 (2022). https://doi.org/10.1007/s11064-022-03714-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03714-w

Keywords

Navigation