Skip to main content

Advertisement

Log in

Eukaryotic Extension Factor 2 Kinase may Affect the Occurrence and Development of Glioblastoma Through Immune Cell Infiltration

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) is one of the most common malignancies among primary brain tumors in adults, featuring a poor prognosis and a high recurrence rate. Eukaryotic elongation factor 2 kinase (eEF2K) is a calcium/calmodulin-dependent protein kinase that is involved in promoting tumor cell proliferation, migration, invasion, and survival. However, its expression level in GBM, its prognostic impact and correlation with immune infiltration are not yet known. In this study, we used The Cancer Genome Atlas (TCGA) database to explore the potential molecular mechanisms of eEF2K in GBM development and clinical prognosis in terms of gene expression, survival status, immune infiltration, and associated cellular pathways. We found that eEF2K expression levels were elevated in GBM, but eEF2K was not associated with the prognosis of GBM patients; eEF2K expression in GBM was associated with multiple immune cell infiltrations. These results show a statistical correlation between eEF2K expression and the development of GBM and immune cell infiltration, which helps us to understand the roles of eEF2K in GBM from different perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Liu XY, Zhang L, Wu J et al (2013) Inhibition of elongation factor-2 kinase augments the antitumor activity of Temozolomide against glioma. PLoS ONE 8:e81345. https://doi.org/10.1371/journal.pone.0081345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brandao M, Simon T, Critchley G et al (2019) Astrocytes, the rising stars of the glioblastoma microenvironment. Glia 67:779–790. https://doi.org/10.1002/glia.23520

    Article  PubMed  Google Scholar 

  3. Perry JR, Laperriere N, O’Callaghan CJ et al (2017) Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med 376:1027–1037. https://doi.org/10.1056/NEJMoa1611977

    Article  CAS  PubMed  Google Scholar 

  4. Wu H, Yang JM, Jin S et al (2006) Elongation factor-2 kinase regulates autophagy in human glioblastoma cells. Cancer Res 66:3015–3023. https://doi.org/10.1158/0008-5472.CAN-05-1554

    Article  CAS  PubMed  Google Scholar 

  5. Bircan HA, Gurbuz N, Pataer A et al (2018) Elongation factor-2 kinase (eEF-2K) expression is associated with poor patient survival and promotes proliferation, invasion and tumor growth of lung cancer. Lung Cancer 124:31–39. https://doi.org/10.1016/j.lungcan.2018.07.027

    Article  PubMed  Google Scholar 

  6. Zhou Y, Li Y, Xu S et al (2020) Eukaryotic elongation factor 2 kinase promotes angiogenesis in hepatocellular carcinoma via PI3K/Akt and STAT3. Int J Cancer 146:1383–1395. https://doi.org/10.1002/ijc.32560

    Article  CAS  PubMed  Google Scholar 

  7. Maag JLV (2018) gganatogram: An R package for modular visualisation of anatograms and tissues based on ggplot2. F1000Res 7:1576. https://doi.org/10.12688/f1000research.16409.2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu J, Lichtenberg T, Hoadley KA et al (2018) An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173:400-416.e11. https://doi.org/10.1016/j.cell.2018.02.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuleshov MV, Jones MR, Rouillard AD et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90–W97. https://doi.org/10.1093/nar/gkw377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu G, Wang LG, Han Y et al (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang M, Qi L, Jin K et al (2021) eEF2K as a novel metastatic and prognostic biomarker in gastric cancer patients. Pathol Res Pract 225:153568. https://doi.org/10.1016/j.prp.2021.153568

    Article  CAS  PubMed  Google Scholar 

  13. Ashour AA, Abdel-Aziz AA, Mansour AM et al (2014) Targeting elongation factor-2 kinase (eEF-2K) induces apoptosis in human pancreatic cancer cells. Apoptosis 19:241–258. https://doi.org/10.1007/s10495-013-0927-2

    Article  CAS  PubMed  Google Scholar 

  14. Zhu H, Song H, Chen G et al (2017) eEF2K promotes progression and radioresistance of esophageal squamous cell carcinoma. Radiother Oncol 124:439–447. https://doi.org/10.1016/j.radonc.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  15. Ng TH, Sham KWY, Xie CM et al (2019) Eukaryotic elongation factor-2 kinase expression is an independent prognostic factor in colorectal cancer. BMC Cancer 19:649. https://doi.org/10.1186/s12885-019-5873-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu R, Proud CG (2016) Eukaryotic elongation factor 2 kinase as a drug target in cancer, and in cardiovascular and neurodegenerative diseases. Acta Pharmacol Sin 37:285–294. https://doi.org/10.1038/aps.2015.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheng Y, Ren X, Zhang Y et al (2013) Integrated regulation of autophagy and apoptosis by EEF2K controls cellular fate and modulates the efficacy of curcumin and velcade against tumor cells. Autophagy 9:208–219. https://doi.org/10.4161/auto.22801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karakas D, Ozpolat B (2020) Eukaryotic elongation factor-2 kinase (eEF2K) signaling in tumor and microenvironment as a novel molecular target. J Mol Med (Berl) 98:775–787. https://doi.org/10.1007/s00109-020-01917-8

    Article  CAS  PubMed  Google Scholar 

  19. Ma T (2021) Roles of eukaryotic elongation factor 2 kinase (eEF2K) in neuronal plasticity, cognition, and Alzheimer disease. J Neurochem. https://doi.org/10.1111/jnc.15541

    Article  PubMed  Google Scholar 

  20. Beckelman BC, Yang W, Kasica NP et al (2019) Genetic reduction of eEF2 kinase alleviates pathophysiology in Alzheimer’s disease model mice. J Clin Invest 129:820–833. https://doi.org/10.1172/JCI122954

    Article  PubMed  PubMed Central  Google Scholar 

  21. Westphal M, Lamszus K (2011) The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 12:495–508. https://doi.org/10.1038/nrn3060

    Article  CAS  PubMed  Google Scholar 

  22. Liu JC, Voisin V, Wang S et al (2014) Combined deletion of Pten and p53 in mammary epithelium accelerates triple-negative breast cancer with dependency on eEF2K. EMBO Mol Med 6:1542–1560. https://doi.org/10.15252/emmm.201404402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Croci DO, Salatino M (2011) Tumor immune escape mechanisms that operate during metastasis. Curr Pharm Biotechnol 12:1923–1936. https://doi.org/10.2174/138920111798376987

    Article  CAS  PubMed  Google Scholar 

  24. Zhang H, Zhou Y, Cui B et al (2020) Novel insights into astrocyte-induced signaling of proliferation, invasion and tumor immune microenvironment in glioblastoma. Biomed pharmacother 126:110086. https://doi.org/10.1016/j.biopha.2020.110086

    Article  CAS  PubMed  Google Scholar 

  25. Golán I, Rodríguez de la Fuente L, Costoya JA (2018) NK Cell-based glioblastoma immunotherapy. Cancers 10:522. https://doi.org/10.3390/cancers10120522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Song J, Kadaba P, Kravitz A et al (2020) Multiparametric MRI for early identification of therapeutic response in recurrent glioblastoma treated with immune checkpoint inhibitors. Neuro Oncol 22:1658–1666. https://doi.org/10.1093/neuonc/noaa066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walker DG, Shakya R, Morrison B et al (2019) Impact of pre-therapy glioblastoma multiforme microenvironment on clinical response to autologous CMV-specific T-cell therapy. Clin Transl Immunol 8:e01088. https://doi.org/10.1002/cti2.1088

    Article  Google Scholar 

  28. Rosato PC, Wijeyesinghe S, Stolley JM et al (2019) Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy. Nat Commun 10:567. https://doi.org/10.1038/s41467-019-08534-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Woroniecka KI, Rhodin KE, Chongsathidkiet P et al (2018) T-cell dysfunction in glioblastoma: applying a new framework. Clin Cancer Res 24:3792–3802. https://doi.org/10.1158/1078-0432.CCR-18-0047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Di Lullo G, Marcatti M, Heltai S et al (2015) Th22 cells increase in poor prognosis multiple myeloma and promote tumor cell growth and survival. Oncoimmunology 4:e1005460. https://doi.org/10.1080/2162402X.2015.1005460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee M, Park C, Woo J et al (2019) Preferential infiltration of unique Vγ9Jγ2-Vδ2 T cells into glioblastoma multiforme. Front Immunol 10:555. https://doi.org/10.3389/fimmu.2019.00555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Affiliated Hospital of Youjiang Medical University For Nationalities Scientific Research Foundation (R20196304); Guangxi Science and Technology Program (2019AC20043); Baise county Scientific Research Foundation (BS20193220); Guangxi Academic Degree and Graduate Education Reform Foundation (JGY2020165); Haishan Lu was supported by Guangxi University Young and Middle-aged teachers Scientific Research ability improvement program (2020KY13019). Qian Gu was supported by Affiliated Hospital of Youjiang Medical University For Nationalities Scientific Research Foundation (yy2021sk050). The results shown here are in whole or based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to and approved the final manuscript.

Corresponding author

Correspondence to Qian Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cen, L., Gu, Q., Zhou, X. et al. Eukaryotic Extension Factor 2 Kinase may Affect the Occurrence and Development of Glioblastoma Through Immune Cell Infiltration. Neurochem Res 47, 3670–3681 (2022). https://doi.org/10.1007/s11064-022-03679-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03679-w

Keywords

Navigation