Skip to main content

Advertisement

Log in

Peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ): Molecular Effects and Its Importance as a Novel Therapeutic Target for Cerebral Ischemic Injury

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cerebral ischemic injury is a leading cause of death and long-term disability throughout the world. Peroxisome proliferator-activated receptor gamma (PPAR-ɣ) is a ligand-activated nuclear transcription factor that is a member of the PPAR family. PPAR-ɣ has been shown in several in vitro and in vivo models to prevent post-ischemic inflammation and neuronal damage by negatively controlling the expression of genes modulated by cerebral ischemic injury, indicating a neuroprotective effect during cerebral ischemic injury. A extensive literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on the mechanistic role of Peroxisome proliferator activated receptor gamma and its modulation in Cerebral ischemic injury. PPAR-ɣ can interact with specific DNA response elements to control gene transcription and expression when triggered by its ligand. It regulates lipid metabolism, improves insulin sensitivity, modulates antitumor mechanisms, reduces oxidative stress, and inhibits inflammation. This review article provides insights on the current state of research into the neuroprotective effects of PPAR-ɣ in cerebral ischemic injury, as well as the cellular and molecular mechanisms by which these effects are modulated, such as inhibition of inflammation, reduction of oxidative stress, suppression of pro-apoptotic production, modulation of transcription factors, and restoration of injured tissue through neurogenesis and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee R, Lee M, Wu C, Couto E Silva A et al (2018) Cerebral ischemia and neuroregeneration. Neural Regen Res 13(3):373–385. https://doi.org/10.4103/1673-5374.228711

    Article  PubMed  PubMed Central  Google Scholar 

  2. French BR, Boddepalli RS, Govindarajan R (2016) Acute ischemic stroke: current status and future directions. Mo Med 113(6):480–486

    PubMed  PubMed Central  Google Scholar 

  3. Chugh C (2019) Acute ischemic stroke: management approach. Indian J Crit Care Med 23(2):S140–S146. https://doi.org/10.5005/jp-journals-10071-23192

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rymer MM (2011) Hemorrhagic stroke: intracerebral hemorrhage. Mo Med 108(1):50–54

    PubMed  PubMed Central  Google Scholar 

  5. Boehme AK, Esenwa C, Elkind MS (2017) Stroke risk factors, genetics, and prevention. Circ Res 120(3):472–495. https://doi.org/10.1161/CIRCRESAHA.116.308398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Khan H, Kashyap A, Kaur A et al (2020) Pharmacological postconditioning: a molecular aspect in ischemic injury. J Pharm Pharmacol 72(11):1513–1527. https://doi.org/10.1111/jphp.13336

    Article  PubMed  CAS  Google Scholar 

  7. Grewal AK, Singh N, Singh TG (2019) Neuroprotective effect of pharmacological postconditioning on cerebral ischaemia-reperfusion-induced injury in mice. J Pharm Pharmacol 71(6):956–970. https://doi.org/10.1111/jphp.13073

    Article  PubMed  CAS  Google Scholar 

  8. Donkor ES (2018) Stroke in the 21st century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res Treat. https://doi.org/10.1155/2018/3238165

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tyagi S, Gupta P, Saini AS et al (2011) The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2(4):236–240. https://doi.org/10.4103/2231-4040.90879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Houseknecht KL, Cole BM, Steele PJ (2002) Peroxisome proliferator-activated receptor gamma (PPARgamma) and its ligands: a review. Domest Anim Endocrinol 22(1):1–23. https://doi.org/10.1016/s0739-7240(01)00117-5

    Article  PubMed  CAS  Google Scholar 

  11. Kroker AJ, Bruning JB (2015) Review of the structural and dynamic mechanisms of PPARγ partial agonism. PPAR Res. https://doi.org/10.1155/2015/816856

    Article  PubMed  PubMed Central  Google Scholar 

  12. Thapa K, Khan H, Sharma U et al (2021) Poly (ADP-ribose) polymerase-1 as a promising drug target for neurodegenerative diseases. Life Science 267:118975. https://doi.org/10.1016/j.lfs.2020.118975

    Article  CAS  Google Scholar 

  13. Weikum ER, Liu X, Ortlund EA (2018) The nuclear receptor superfamily: a structural perspective. Protein Sci 27(11):1876–1892. https://doi.org/10.1002/pro.3496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Brunmeir R, Xu F (2018) Functional regulation of PPARs through post-translational modifications. Int J Mol Sci 19(6):1738. https://doi.org/10.3390/ijms19061738

    Article  PubMed Central  CAS  Google Scholar 

  15. Kim CS, Park WH, Park JY et al (2004) Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor gamma in HT-29 human colon cancer cells. J Med Food 7(3):267–273. https://doi.org/10.1089/jmf.2004.7.267

    Article  PubMed  CAS  Google Scholar 

  16. Burns KA, Vanden Heuvel JP (2007) Modulation of PPAR activity via phosphorylation. Biochem Biophys Acta 1771(8):952–960. https://doi.org/10.1016/j.bbalip.2007.04.018

    Article  PubMed  CAS  Google Scholar 

  17. Choi JH, Banks AS, Kamenecka TM et al (2011) Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation. Nature 477(7365):477–481. https://doi.org/10.1038/nature10383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Choi SS, Kim ES, Koh M et al (2014) A novel non-agonist peroxisome proliferator-activated receptor γ (PPARγ) ligand UHC1 blocks PPARγ phosphorylation by cyclin-dependent kinase 5 (CDK5) and improves insulin sensitivity. J Biol Chem 289(38):26618–26629. https://doi.org/10.1074/jbc.M114.566794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Rai A, Tripathi S, Kushwaha R et al (2014) CDK5-induced p-PPARγ(Ser 112) downregulates GFAP via PPREs in developing rat brain: effect of metal mixture and troglitazone in astrocytes. Cell Death Dis 5(1):e1033. https://doi.org/10.1038/cddis.2013.514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ohshima T, Koga H, Shimotohno K (2004) Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by SUMO-1 modification. J Biol Chem 279(28):29551–29557. https://doi.org/10.1074/jbc.M403866200

    Article  PubMed  CAS  Google Scholar 

  21. Jennewein C, Kuhn AM, Schmidt MV et al (2008) Sumoylation of peroxisome proliferator-activated receptor gamma by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from kappaB binding sites mediating transrepression of proinflammatory cytokines. J Immunol 181(8):5646–5652. https://doi.org/10.4049/jimmunol.181.8.5646

    Article  PubMed  CAS  Google Scholar 

  22. Waite KJ, Floyd ZE, Arbour-Reily P et al (2001) Interferon-gamma-induced regulation of peroxisome proliferator-activated receptor gamma and STATs in adipocytes. J Biol Chem 276(10):7062–7068. https://doi.org/10.1074/jbc.M007894200

    Article  PubMed  CAS  Google Scholar 

  23. He F, Doucet JA, Stephens JM (2008) Caspase-mediated degradation of PPARgamma proteins in adipocytes. Obesity 16(8):1735–1741. https://doi.org/10.1038/oby.2008.269

    Article  PubMed  CAS  Google Scholar 

  24. Cai W, Yang T, Liu H et al (2018) Peroxisome proliferator-activated receptor γ (PPARγ): a master gatekeeper in CNS injury and repair. Prog Neurobiol 163–164:27–58. https://doi.org/10.1016/j.pneurobio.2017.10.002

    Article  PubMed  CAS  Google Scholar 

  25. Ahmadian M, Suh JM, Hah N et al (2013) PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 19(5):557–566. https://doi.org/10.1038/nm.3159

    Article  PubMed  CAS  Google Scholar 

  26. Song EK, Lee YR, Kim YR et al (2012) NAADP mediates insulin-stimulated glucose uptake and insulin sensitization by PPARγ in adipocytes. Cell Rep 2(6):1607–1619. https://doi.org/10.1016/j.celrep.2012.10.018

    Article  PubMed  CAS  Google Scholar 

  27. Singh S, Singh TG, Rehni AK et al (2021) Reviving mitochondrial bioenergetics: a relevant approach in epilepsy. Mitochondrion 58:213–226. https://doi.org/10.1016/j.mito.2021.03.009

    Article  PubMed  CAS  Google Scholar 

  28. Shimazu T, Inoue I, Araki N et al (2005) A peroxisome proliferator-activated receptor-gamma agonist reduces infarct size in transient but not in permanent ischemia. Stroke 36(2):353–359. https://doi.org/10.1161/01.STR.0000152271.21943.a2

    Article  PubMed  CAS  Google Scholar 

  29. Villapol S (2018) Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell Mol Neurobiol 38(1):121–132. https://doi.org/10.1007/s10571-017-0554-5

    Article  PubMed  CAS  Google Scholar 

  30. Mandrekar-Colucci S, Sauerbeck A, Popovich PG et al (2013) PPAR agonists as therapeutics for CNS trauma and neurological diseases. ASN Neuro 5(5):e00129. https://doi.org/10.1042/AN20130030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Moreno S, Farioli-Vecchioli S, Cerù MP (2004) Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience 123(1):131–145. https://doi.org/10.1016/j.neuroscience.2003.08.064

    Article  PubMed  CAS  Google Scholar 

  32. Warden A, Truitt J, Merriman M et al (2016) Localization of PPAR isotypes in the adult mouse and human brain. Sci Rep 6:27618. https://doi.org/10.1038/srep27618b

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. D’Angelo M, Castelli V, Catanesi M et al (2019) PPARγ and cognitive performance. Int J Mol Sci 20(20):5068. https://doi.org/10.3390/ijms20205068

    Article  PubMed Central  CAS  Google Scholar 

  34. Ferguson LB, Most D, Blednov YA et al (2014) PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption. Neuropharmacology 86:397–407. https://doi.org/10.1016/j.neuropharm.2014.06.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bernardo A, Minghetti L (2006) PPAR-gamma agonists as regulators of microglial activation and brain inflammation. Curr Pharm Des 12(1):93–109. https://doi.org/10.2174/138161206780574579

    Article  PubMed  CAS  Google Scholar 

  36. Yu Y, Han Q, Ding X et al (2016) Defining core and penumbra in ischemic stroke: a voxel- and volume-based analysis of whole brain CT perfusion. Sci Rep 6:20932. https://doi.org/10.1038/srep20932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hillis AE, Baron JC (2015) Editorial: the ischemic penumbra: still the target for stroke therapies? Front Neurol 6:85. https://doi.org/10.3389/fneur.2015.00085

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kapadia R, Yi JH, Vemuganti R (2008) Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci 13:1813–1826. https://doi.org/10.2741/2802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Prentice H, Modi JP, Wu JY (2015) Mechanisms of neuronal protection against excitotoxicity, endoplasmic reticulum stress, and mitochondrial dysfunction in stroke and neurodegenerative diseases. Oxid Med Cell Longev. https://doi.org/10.1155/2015/964518

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rehni AK, Singh TG, Singh N et al (2010) Tramadol-induced seizurogenic effect: a possible role of opioid-dependent histamine H1 receptor activation-linked mechanism. Naunyn Schmiedebergs Arch Pharmacol 381(1):11–19. https://doi.org/10.1007/s00210-009-0476-y

    Article  PubMed  CAS  Google Scholar 

  41. Liu F, Lu J, Manaenko A et al (2018) Mitochondria in ischemic stroke: new insight and implications. Aging Dis 9(5):924–937. https://doi.org/10.14336/AD.2017.1126

    Article  PubMed  PubMed Central  Google Scholar 

  42. Emerich DF, Dean RL, Bartus RT (2002) The role of leukocytes following cerebral ischemia: pathogenic variable or bystander reaction to emerging infarct? Exp Neurol 173(1):168–181. https://doi.org/10.1006/exnr.2001.7835

    Article  PubMed  Google Scholar 

  43. Zhang YY, Wang K, Liu YE et al (2019) Identification of key transcription factors associated with cerebral ischemia-reperfusion injury based on gene-set enrichment analysis. Int J Mol Med 43(6):2429–2439. https://doi.org/10.3892/ijmm.2019.4159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Shi H (2009) Hypoxia inducible factor 1 as a therapeutic target in ischemic stroke. Curr Med Chem 16(34):4593–4600. https://doi.org/10.2174/092986709789760779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Liang Z, Wu G, Fan C et al (2016) The emerging role of signal transducer and activator of transcription 3 in cerebral ischemic and hemorrhagic stroke. Prog Neurobiol 137:1–16. https://doi.org/10.1016/j.pneurobio.2015.11.001

    Article  PubMed  CAS  Google Scholar 

  46. Tureyen K, Brooks N, Bowen K et al (2008) Transcription factor early growth response-1 induction mediates inflammatory gene expression and brain damage following transient focal ischemia. J Neurochem 105(4):1313–1324. https://doi.org/10.1111/j.1471-4159.2008.05233.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Alexander M, Forster C, Sugimoto K et al (2003) Interferon regulatory factor-1 immunoreactivity in neurons and inflammatory cells following ischemic stroke in rodents and humans. Acta Neuropathol 105(5):420–424. https://doi.org/10.1007/s00401-002-0658-x

    Article  PubMed  CAS  Google Scholar 

  48. Lin H, Cheng CF (2018) Activating transcription factor 3, an early cellular adaptive responder in ischemia/reperfusion-induced injury. Tzu-chi Med J 30(2):61–65. https://doi.org/10.4103/tcmj.tcmj_37_18

    Article  PubMed Central  Google Scholar 

  49. Sharma VK, Singh TG (2020) CREB: a multifaceted target for Alzheimer’s disease. Curr Alzheimer Res 17(14):1280–1293. https://doi.org/10.2174/1567205018666210218152253

    Article  PubMed  CAS  Google Scholar 

  50. Singh S, Singh TG (2020) Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: an mechanistic approach. Curr Neuropharmacol 18(10):918–935. https://doi.org/10.2174/1570159X18666200207120949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Vemuganti R (2008) Therapeutic potential of PPARγ activation in stroke. PPAR Res. https://doi.org/10.1155/2008/461981

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rehni AK, Singh TG (2012) Involvement of CCR-2 chemokine receptor activation in ischemic preconditioning and postconditioning of brain in mice. Cytokine 60(1):83–89. https://doi.org/10.1016/j.cyto.2012.05.009

    Article  PubMed  CAS  Google Scholar 

  53. Wei J, Zhang Y, Jia Q et al (2016) Systematic investigation of transcription factors critical in the protection against cerebral ischemia by Danhong injection. Sci Rep 6:29823. https://doi.org/10.1038/srep29823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Culman J, Zhao Y, Gohlke P et al (2007) PPAR-gamma: therapeutic target for ischemic stroke. Trends Pharmacol Sci 28(5):244–249. https://doi.org/10.1016/j.tips.2007.03.004

    Article  PubMed  CAS  Google Scholar 

  55. Li W, Yang S (2016) Targeting oxidative stress for the treatment of ischemic stroke: Upstream and downstream therapeutic strategies. Brain Circ 2(4):153–163. https://doi.org/10.4103/2394-8108.195279

    Article  PubMed  PubMed Central  Google Scholar 

  56. Khan H, Gupta A, Singh TG et al (2021) Mechanistic insight on the role of leukotriene receptors in ischemic-reperfusion injury. Pharmacol Rep. https://doi.org/10.1007/s43440-021-00258-8

    Article  PubMed  Google Scholar 

  57. Bordet R, Ouk T, Petrault O et al (2006) PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans 34(6):1341–1346. https://doi.org/10.1042/BST0341341

    Article  PubMed  CAS  Google Scholar 

  58. Victor NA, Wanderi EW, Gamboa J et al (2006) Altered PPARgamma expression and activation after transient focal ischemia in rats. Eur J Neurosci 24(6):1653–1663. https://doi.org/10.1111/j.1460-9568.2006.05037.x

    Article  PubMed  CAS  Google Scholar 

  59. Stark DT, Bazan NG (2011) Synaptic and extrasynaptic NMDA receptors differentially modulate neuronal cyclooxygenase-2 function, lipid peroxidation, and neuroprotection. J Neurosci 31(39):13710–13721. https://doi.org/10.1523/JNEUROSCI.3544-11.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wang L, Zhang MJ, Li WJ et al (2019) Rosiglitazone protect PC12 cells against oxygen-glucose deprivation/reoxygenation through HMGB1 reduction and DUSP8 upregulation. J Apoplexy Nerv Dis 36:541–545

    Google Scholar 

  61. Yang H, Chen C (2008) Cyclooxygenase-2 in synaptic signaling. Curr Pharm Des 14(14):1443–1451. https://doi.org/10.2174/138161208784480144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Font-Nieves M, Sans-Fons MG, Gorina R et al (2012) Induction of COX-2 enzyme and down-regulation of COX-1 expression by lipopolysaccharide (LPS) control prostaglandin E2 production in astrocytes. J Biol Chem 287(9):6454–6468. https://doi.org/10.1074/jbc.M111.327874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhao X, Strong R, Zhang J et al (2009) Neuronal PPARgamma deficiency increases susceptibility to brain damage after cerebral ischemia. J Neurosci 29(19):6186–6195. https://doi.org/10.1523/JNEUROSCI.5857-08.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Liu ZJ, Liu W, Liu L et al (2013) Curcumin protects neuron against cerebral ischemia-induced inflammation through improving PPAR-gamma function. Evid Complement Altern Med. https://doi.org/10.1155/2013/470975

    Article  Google Scholar 

  65. Polvani S, Tarocchi M, Galli A (2012) PPARγ and oxidative stress: Con(β) catenating NRF2 and FOXO. PPAR Res. https://doi.org/10.1155/2012/641087

    Article  PubMed  PubMed Central  Google Scholar 

  66. Corona JC, Duchen MR (2016) PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radical Biol Med 100:153–163. https://doi.org/10.1016/j.freeradbiomed.2016.06.023

    Article  CAS  Google Scholar 

  67. Yu X, Shao XG, Sun H et al (2008) Activation of cerebral peroxisome proliferator-activated receptors gamma exerts neuroprotection by inhibiting oxidative stress following pilocarpine-induced status epilepticus. Brain Res 1200:146–158. https://doi.org/10.1016/j.brainres.2008.01.047

    Article  PubMed  CAS  Google Scholar 

  68. Reddy AT, Lakshmi SP, Banno A et al (2018) Role of GPx3 in PPARγ-induced protection against COPD-associated oxidative stress. Free Radical Biol Med 126:350–357. https://doi.org/10.1016/j.freeradbiomed.2018.08.014

    Article  CAS  Google Scholar 

  69. Vanella L, Sanford C, Kim DH et al (2012) Oxidative stress and heme oxygenase-1 regulated human mesenchymal stem cells differentiation. Int J Hypertens. https://doi.org/10.1155/2012/890671

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sharma V, Kaur A, Singh TG (2020) Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer’s disease. Biomed Pharmacother 129:110373. https://doi.org/10.1016/j.biopha.2020.110373

    Article  PubMed  CAS  Google Scholar 

  71. Huang J, Tabbi-Anneni I, Gunda V et al (2010) Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism. Am J Physiol Gastrointest Liver Physiol 299(6):G1211–G1221. https://doi.org/10.1152/ajpgi.00322.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Tabei Y, Murotomi K, Umeno A et al (2017) Antioxidant properties of 5-hydroxy-4-phenyl-butenolide via activation of Nrf2/ARE signaling pathway. Food Chem Toxicol 107(Pt A):129–137. https://doi.org/10.1016/j.fct.2017.06.039

    Article  PubMed  CAS  Google Scholar 

  73. Mahmoud-Awny M, Attia AS, Abd-Ellah MF et al (2015) Mangiferin mitigates gastric ulcer in ischemia/ reperfused rats: involvement of PPAR-γ, NF-κB and Nrf2/HO-1 signaling pathways. PLoS ONE 10(7):e0132497. https://doi.org/10.1371/journal.pone.0132497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Chung SS, Kim M, Youn BS et al (2009) Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor gamma in human skeletal muscle cells. Mol Cell Biol 29(1):20–30. https://doi.org/10.1128/MCB.00544-08

    Article  PubMed  CAS  Google Scholar 

  75. Alcaraz MJ, Fernández P, Guillén MI (2003) Anti-inflammatory actions of the heme oxygenase-1 pathway. Curr Pharm Des 9(30):2541–2551. https://doi.org/10.2174/1381612033453749

    Article  PubMed  CAS  Google Scholar 

  76. Gong P, Stewart D, Hu B et al (2002) Activation of the mouse heme oxygenase-1 gene by 15-deoxy-Delta(12,14)-prostaglandin J(2) is mediated by the stress response elements and transcription factor Nrf2. Antioxid Redox Signal 4(2):249–257. https://doi.org/10.1089/152308602753666307

    Article  PubMed  CAS  Google Scholar 

  77. Kleinhenz JM, Kleinhenz DJ, You S et al (2009) Disruption of endothelial peroxisome proliferator-activated receptor-gamma reduces vascular nitric oxide production. Am J Physiol 297(5):H1647–H1654. https://doi.org/10.1152/ajpheart.00148.2009

    Article  CAS  Google Scholar 

  78. Rehni AK, Singh TG, Kalra R et al (2009) Pharmacological inhibition of inducible nitric oxide synthase attenuates the development of seizures in mice. Nitric Oxide 21(2):120–125. https://doi.org/10.1016/j.niox.2009.06.001

    Article  PubMed  CAS  Google Scholar 

  79. Polikandriotis JA, Mazzella LJ, Rupnow HL et al (2005) Peroxisome proliferator-activated receptor gamma ligands stimulate endothelial nitric oxide production through distinct peroxisome proliferator-activated receptor gamma-dependent mechanisms. Arterioscler Thromb Vasc Biol 25(9):1810–1816. https://doi.org/10.1161/01.ATV.0000177805.65864.d4

    Article  PubMed  CAS  Google Scholar 

  80. Yuen CY, Wong WT, Tian XY et al (2011) Telmisartan inhibits vasoconstriction via PPARγ-dependent expression and activation of endothelial nitric oxide synthase. Cardiovasc Res 90(1):122–129. https://doi.org/10.1093/cvr/cvq392

    Article  PubMed  CAS  Google Scholar 

  81. Febbraio M, Hajjar DP, Silverstein RL (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Investig 108(6):785–791

    Article  CAS  Google Scholar 

  82. Ishii T, Itoh K, Ruiz E et al (2004) Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal. Circ Res 94(5):609–616. https://doi.org/10.1161/01.RES.0000119171.44657.45

    Article  PubMed  CAS  Google Scholar 

  83. Pierelli G, Stanzione R, Forte M et al (2017) Uncoupling protein 2: a key player and a potential therapeutic target in vascular diseases. Oxid Med Cell Longev. https://doi.org/10.1155/2017/7348372

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chen YJ, Sheu ML, Tsai KS et al (2013) Advanced glycation end products induce peroxisome proliferator-activated receptor γ down-regulation-related inflammatory signals in human chondrocytes via Toll-like receptor-4 and receptor for advanced glycation end products. PLoS ONE. https://doi.org/10.1371/journal.pone.0066611.e66611

    Article  PubMed  PubMed Central  Google Scholar 

  85. Jiang C, Ting AT, Seed B (1998) PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391(6662):82–86. https://doi.org/10.1038/34184

    Article  PubMed  CAS  Google Scholar 

  86. Reddy RC (2008) Immunomodulatory role of PPAR-gamma in alveolar macrophages. J Investig Med 56(2):522–527. https://doi.org/10.2310/JIM.0b013e3181659972

    Article  PubMed  CAS  Google Scholar 

  87. Luo Y, Yin W, Signore AP et al (2006) Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. J Neurochem 97(2):435–448. https://doi.org/10.1111/j.1471-4159.2006.03758.x

    Article  PubMed  CAS  Google Scholar 

  88. Glatz T, Stöck I, Nguyen-Ngoc M et al (2010) Peroxisome-proliferator-activated receptors gamma and peroxisome-proliferator-activated receptors beta/delta and the regulation of interleukin 1 receptor antagonist expression by pioglitazone in ischaemic brain. J Hypertens 28(7):1488–1497. https://doi.org/10.1097/HJH.0b013e3283396e4e

    Article  PubMed  CAS  Google Scholar 

  89. Gliem M, Klotz L, van Rooijen N et al (2015) Hyperglycemia and PPARγ antagonistically influence macrophage polarization and infarct healing after ischemic stroke. Stroke 46(10):2935–2942. https://doi.org/10.1161/STROKEAHA.115.010557

    Article  PubMed  CAS  Google Scholar 

  90. Zhang Q, Hu W, Meng B et al (2010) PPARγ agonist rosiglitazone is neuroprotective after traumatic spinal cord injury via anti-inflammatory in adult rats. Neurol Res 32(8):852–859. https://doi.org/10.1179/016164110X12556180206112

    Article  PubMed  CAS  Google Scholar 

  91. Iwanami J, Mogi M, Tsukuda K et al (2010) Low dose of telmisartan prevents ischemic brain damage with peroxisome proliferator-activated receptor-gamma activation in diabetic mice. J Hypertens 28(8):1730–1737. https://doi.org/10.1097/HJH.0b013e32833a551a

    Article  PubMed  CAS  Google Scholar 

  92. Washida K, Ihara M, Nishio K et al (2010) Nonhypotensive dose of telmisartan attenuates cognitive impairment partially due to peroxisome proliferator-activated receptor-gamma activation in mice with chronic cerebral hypoperfusion. Stroke 41(8):1798–1806. https://doi.org/10.1161/STROKEAHA.110.583948

    Article  PubMed  CAS  Google Scholar 

  93. Kumari R, Willing LB, Patel SD et al (2010) The PPAR-gamma agonist, darglitazone, restores acute inflammatory responses to cerebral hypoxia-ischemia in the diabetic ob/ob mouse. J Cereb Blood Flow Metab 30(2):352–360. https://doi.org/10.1038/jcbfm.2009.221

    Article  PubMed  CAS  Google Scholar 

  94. Huang L, Li G, Feng X et al (2015) 15d-PGJ2 reduced microglia activation and alleviated neurological deficit of ischemic reperfusion in diabetic rat model. Biomed Res Int. https://doi.org/10.1155/2015/864509

    Article  PubMed  PubMed Central  Google Scholar 

  95. Pereira MP, Hurtado O, Cárdenas A et al (2005) The nonthiazolidinedione PPARgamma agonist L-796,449 is neuroprotective in experimental stroke. J Neuropathol Exp Neurol 64(9):797–805. https://doi.org/10.1097/01.jnen.0000178852.83680.3c

    Article  PubMed  CAS  Google Scholar 

  96. Han J, Sun L, Xu Y et al (2015) Activation of PPARγ by 12/15-lipoxygenase during cerebral ischemia-reperfusion injury. Int J Mol Med 35(1):195–201. https://doi.org/10.3892/ijmm.2014.1998

    Article  PubMed  CAS  Google Scholar 

  97. Choo J, Lee Y, Yan XJ et al (2015) A novel peroxisome proliferator-activated receptor (PPAR)γ agonist 2-hydroxyethyl 5-chloro-4,5-didehydrojasmonate exerts anti-inflammatory effects in colitis. J Biol Chem 290(42):25609–25619. https://doi.org/10.1074/jbc.M115.673046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Zhuo Y, Zhuo J (2019) Tranilast treatment attenuates cerebral ischemia-reperfusion injury in rats through the inhibition of inflammatory responses mediated by NF-κB and PPARs. Clin Transl Sci 12(2):196–202. https://doi.org/10.1111/cts.12606

    Article  PubMed  CAS  Google Scholar 

  99. Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15(1):11–18. https://doi.org/10.1038/sj.cr.7290257

    Article  PubMed  CAS  Google Scholar 

  100. Xing B, Xin T, Hunter RL et al (2008) Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt. J Neuroinflamm 5:4. https://doi.org/10.1186/1742-2094-5-4

    Article  CAS  Google Scholar 

  101. Ji H, Wang H, Zhang F (2010) PPARγ agonist pioglitazone inhibits microglia inflammation by blocking p38 mitogen-activated protein kinase signaling pathways. Inflamm Res 59(11):921–929. https://doi.org/10.1007/s00011-010-0203-7

    Article  PubMed  CAS  Google Scholar 

  102. Nuwormegbe SA, Sohn JH, Kim SW (2017) A PPAR-gamma agonist rosiglitazone suppresses fibrotic response in human pterygium fibroblasts by modulating the p38 MAPK pathway. Invest Ophthalmol Vis Sci 58(12):5217–5226. https://doi.org/10.1167/iovs.17-22203

    Article  PubMed  CAS  Google Scholar 

  103. Hernandez R, Teruel T, de Alvaro C et al (2004) Rosiglitazone ameliorates insulin resistance in brown adipocytes of Wistar rats by impairing TNF-alpha induction of p38 and p42/p44 mitogen-activated protein kinases. Diabetologia 47(9):1615–1624. https://doi.org/10.1007/s00125-004-1503-7

    Article  PubMed  CAS  Google Scholar 

  104. Liu Y, Chen S, Liu J et al (2020) Telmisartan inhibits oxalate and calcium oxalate crystal-induced epithelial-mesenchymal transformation via PPAR-γ-AKT/STAT3/p38 MAPK-Snail pathway. Life Sci 241:117108. https://doi.org/10.1016/j.lfs.2019.117108

    Article  PubMed  CAS  Google Scholar 

  105. Min KJ, Um HJ, Cho KH et al (2013) Curcumin inhibits oxLDL-induced CD36 expression and foam cell formation through the inhibition of p38 MAPK phosphorylation. Food Chem Toxicol 58:77–85. https://doi.org/10.1016/j.fct.2013.04.008

    Article  PubMed  CAS  Google Scholar 

  106. Liu Q, Wang CY, Liu Z et al (2014) Hydroxysafflor yellow A suppresses liver fibrosis induced by carbon tetrachloride with high-fat diet by regulating PPAR-γ/p38 MAPK signaling. Pharm Biol 52(9):1085–1093. https://doi.org/10.3109/13880209.2013.877491

    Article  PubMed  CAS  Google Scholar 

  107. Ren G, Roberts AI, Shi Y (2011) Adhesion molecules: key players in Mesenchymal stem cell-mediated immunosuppression. Cell Adh Migr 5(1):20–22. https://doi.org/10.4161/cam.5.1.13491

    Article  PubMed  PubMed Central  Google Scholar 

  108. Golias C, Batistatou A, Bablekos G et al (2011) Physiology and pathophysiology of selectins, integrins, and IgSF cell adhesion molecules focusing on inflammation. A paradigm model on infectious endocarditis. Cell Commun Adhes 18(3):19–32. https://doi.org/10.3109/15419061.2011.606381

    Article  PubMed  CAS  Google Scholar 

  109. Wang N, Verna L, Chen NG et al (2002) Constitutive activation of peroxisome proliferator-activated receptor-gamma suppresses pro-inflammatory adhesion molecules in human vascular endothelial cells. J Biol Chem 277(37):34176–34181. https://doi.org/10.1074/jbc.M203436200

    Article  PubMed  CAS  Google Scholar 

  110. Sasaki M, Jordan P, Welbourne T et al (2005) Troglitazone, a PPAR-gamma activator prevents endothelial cell adhesion molecule expression and lymphocyte adhesion mediated by TNF-alpha. BMC Physiol 5(1):3. https://doi.org/10.1186/1472-6793-5-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Pasceri V, Wu HD, Willerson JT et al (2000) Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 101(3):235–238. https://doi.org/10.1161/01.cir.101.3.235

    Article  PubMed  CAS  Google Scholar 

  112. Ayumi UO, Yasuo O, Nobuyuki E (2017) The peroxisome proliferator-activated receptor pan-agonist bezafibrate suppresses microvascular inflammatory responses of retinal endothelial cells and vascular endothelial growth factor production in retinal pigmented epithelial cells. Int Immunopharmacol 52:70–76. https://doi.org/10.1016/j.intimp.2017.08.027

    Article  CAS  Google Scholar 

  113. Liu T, Zhang L, Joo D et al (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed  PubMed Central  Google Scholar 

  114. Giridharan S, Srinivasan M (2018) Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J Inflamm Res 11:407–419. https://doi.org/10.2147/JIR.S140188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Scirpo R, Fiorotto R, Villani A et al (2015) Stimulation of nuclear receptor peroxisome proliferator-activated receptor-γ limits NF-κB-dependent inflammation in mouse cystic fibrosis biliary epithelium. Hepatology 62(5):1551–1562. https://doi.org/10.1002/hep.28000

    Article  PubMed  CAS  Google Scholar 

  116. Kunicka Z, Kurzynska A, Szydlowska A et al (2019) Peroxisome proliferator-activated receptor gamma ligands affect NF-κB and cytokine synthesis in the porcine endometrium-An in vitro study. Am J Reprod Immunol 81(1):e13053. https://doi.org/10.1111/aji.13053

    Article  PubMed  CAS  Google Scholar 

  117. Li Q, Tian Z, Wang M et al (2019) Luteoloside attenuates neuroinflammation in focal cerebral ischemia in rats via regulation of the PPARγ/Nrf2/NF-κB signaling pathway. Int Immunopharmacol 66:309–316. https://doi.org/10.1016/j.intimp.2018.11.044

    Article  PubMed  CAS  Google Scholar 

  118. Rani N, Arya DS (2020) Chrysin rescues rat myocardium from ischemia-reperfusion injury via PPAR-γ/Nrf2 activation. Eur J Pharmacol 883:173389. https://doi.org/10.1016/j.ejphar.2020.173389

    Article  PubMed  CAS  Google Scholar 

  119. Hou Y, Moreau F, Chadee K (2012) PPARγ is an E3 ligase that induces the degradation of NFκB/p65. Nat Commun 3:1300. https://doi.org/10.1038/ncomms2270

    Article  PubMed  CAS  Google Scholar 

  120. Kelley N, Jeltema D, Duan Y et al (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20(13):3328. https://doi.org/10.3390/ijms20133328

    Article  PubMed Central  CAS  Google Scholar 

  121. Swanson KV, Deng M, Ting JP (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19(8):477–489. https://doi.org/10.1038/s41577-019-0165-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Song N, Li T (2018) Regulation of NLRP3 inflammasome by phosphorylation. Front Immunol 9:2305. https://doi.org/10.3389/fimmu.2018.02305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Abais JM, XiaM ZY et al (2015) Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 22(13):1111–1129. https://doi.org/10.1089/ars.2014.5994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Fann DY, Lim YA, Cheng YL et al (2018) Evidence that NF-κB and MAPK signaling promotes NLRP inflammasome activation in neurons following ischemic stroke. Mol Neurobiol 55(2):1082–1096. https://doi.org/10.1007/s12035-017-0394-9

    Article  PubMed  CAS  Google Scholar 

  125. Wang X, Li R, Wang X et al (2015) Umbelliferone ameliorates cerebral ischemia-reperfusion injury via upregulating the PPAR gamma expression and suppressing TXNIP/NLRP3 inflammasome. Neurosci Lett 600:182–187. https://doi.org/10.1016/j.neulet.2015.06.016

    Article  PubMed  CAS  Google Scholar 

  126. Zhang YL, Wang RB, Li WY et al (2017) Pioglitazone ameliorates retinal ischemia/reperfusion injury via suppressing NLRP3 inflammasome activities. Int J Ophthalmol 10(12):1812–1818. https://doi.org/10.18240/ijo.2017.12.04

    Article  PubMed  PubMed Central  Google Scholar 

  127. Mahmoud AM, Hussein OE, Abd El-Twab SM et al (2019) Ferulic acid protects against methotrexate nephrotoxicity via activation of Nrf2/ARE/HO-1 signaling and PPARγ, and suppression of NF-κB/NLRP3 inflammasome axis. Food Funct 10(8):4593–4607. https://doi.org/10.1039/c9fo00114j

    Article  PubMed  CAS  Google Scholar 

  128. Yang CC, Wu CH, Lin TC et al (2021) Inhibitory effect of PPARγ on NLRP3 inflammasome activation. Theranostics 11(5):2424–2441. https://doi.org/10.7150/thno.46873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Pan MG, Xiong Y, Chen F (2013) NFAT gene family in inflammation and cancer. Curr Mol Med 13(4):543–554. https://doi.org/10.2174/1566524011313040007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Liu JO (2009) Calmodulin-dependent phosphatase, kinases, and transcriptional corepressors involved in T-cell activation. Immunol Rev 228(1):184–198. https://doi.org/10.1111/j.1600-065X.2008.00756.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Kim KD, Srikanth S, Tan YV et al (2014) Calcium signaling via Orai1 is essential for induction of the nuclear orphan receptor pathway to drive Th17 differentiation. J Immunol 192(1):110–122. https://doi.org/10.4049/jimmunol.1302586

    Article  PubMed  CAS  Google Scholar 

  132. Yang XY, Wang LH, Chen T et al (2000) Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists PPARgamma co-association with transcription factor NFAT. J Biol Chem 275(7):4541–4544. https://doi.org/10.1074/jbc.275.7.4541

    Article  PubMed  CAS  Google Scholar 

  133. Yao J, Lu Y, Zhi M et al (2017) Dietary n-3 polyunsaturated fatty acids ameliorate Crohn’s disease in rats by modulating the expression of PPAR-γ/NFAT. Mol Med Rep 16(6):8315–8322. https://doi.org/10.3892/mmr.2017.7673

    Article  PubMed  CAS  Google Scholar 

  134. Paintlia AS, Paintlia MK, Singh I et al (2006) IL-4-induced peroxisome proliferator-activated receptor gamma activation inhibits NF-kappaB trans activation in central nervous system (CNS) glial cells and protects oligodendrocyte progenitors under neuroinflammatory disease conditions: implication for CNS-demyelinating diseases. J Immunol 176(7):4385–4398. https://doi.org/10.4049/jimmunol.176.7.4385

    Article  PubMed  CAS  Google Scholar 

  135. Wang X, Yu YY, Lieu S et al (2013) MMP9 regulates the cellular response to inflammation after skeletal injury. Bone 52(1):111–119. https://doi.org/10.1016/j.bone.2012.09.018

    Article  PubMed  CAS  Google Scholar 

  136. Manicone AM, McGuire JK (2008) Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 19(1):34–41. https://doi.org/10.1016/j.semcdb.2007.07.003

    Article  PubMed  CAS  Google Scholar 

  137. Hetzel M, Walcher D, Grüb M et al (2003) Inhibition of MMP-9 expression by PPARgamma activators in human bronchial epithelial cells. Thorax 58(9):778–783. https://doi.org/10.1136/thorax.58.9.778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Singh HP, Singh TG, Singh R (2020) Attenuation of cisplatin-induced nephrotoxicity by p-coumaric acid through peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonism in male rats. Res J Pharm Technol 13(11):5270–5276. https://doi.org/10.5958/0974-360X.2020.00922.1

    Article  Google Scholar 

  139. Xu L, Liu JT, Li K et al (2019) Genistein inhibits Ang II-induced CRP and MMP-9 generations via the ER-p38/ERK1/2-PPARγ-NF-κB signaling pathway in rat vascular smooth muscle cells. Life Sci 216:140–146. https://doi.org/10.1016/j.lfs.2018.11.036

    Article  PubMed  CAS  Google Scholar 

  140. Xue Q, Yan Y, Zhang R et al (2018) Regulation of iNOS on immune cells and its role in diseases. Int J Mol Sci 19(12):3805. https://doi.org/10.3390/ijms19123805

    Article  PubMed Central  CAS  Google Scholar 

  141. Rehni AK, Singh TG, Bhateja P et al (2010) Involvement of cyclic adenosine diphosphoribose receptor activation in ischemic preconditioning induced protection in mouse brain. Brain Res 1309:75–82. https://doi.org/10.1016/j.brainres.2009.10.071

    Article  PubMed  CAS  Google Scholar 

  142. Refaie M, El-Hussieny M (2018) Protective effect of pioglitazone on ovarian ischemia reperfusion injury of female rats via modulation of peroxisome proliferator activated receptor gamma and heme-oxygenase 1. Int Immunopharmacol 62:7–14. https://doi.org/10.1016/j.intimp.2018.06.037

    Article  PubMed  CAS  Google Scholar 

  143. Thapa K, Khan H, Singh TG et al (2021) Traumatic brain injury: mechanistic insight on pathophysiology and potential therapeutic targets. J Mol Neurosci. https://doi.org/10.1007/s12031-021-01841-7

    Article  PubMed  Google Scholar 

  144. Xia P, Pan Y, Zhang F et al (2018) Pioglitazone confers neuroprotection against ischemia-induced pyroptosis due to its inhibitory effects on HMGB-1/RAGE and Rac1/ROS pathway by activating PPAR-ɤ. Cell Physiol Biochem 45(6):2351–2368. https://doi.org/10.1159/000488183

    Article  PubMed  CAS  Google Scholar 

  145. Man SM, Karki R, Kanneganti TD (2017) Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 277(1):61–75. https://doi.org/10.1111/imr.12534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Yang H, Wang H, Andersson U (2020) Targeting inflammation driven by HMGB1. Front Immunol 11:484. https://doi.org/10.3389/fimmu.2020.00484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Kalyan S, Chow AW (2009) Linking innate and adaptive immunity: human Vgamma9Vdelta2 T cells enhance CD40 expression and HMGB-1 secretion. Mediators Inflamm. https://doi.org/10.1155/2009/819408

    Article  PubMed  PubMed Central  Google Scholar 

  148. Sumiyoshi M, Satomi J, Kitazato KT et al (2015) PPARγ-dependent and -independent inhibition of the HMGB1/TLR9 pathway by eicosapentaenoic acid attenuates ischemic brain damage in ovariectomized rats. J Stroke Cerebrovasc Dis 24(6):1187–1195. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.01.009

    Article  PubMed  Google Scholar 

  149. Haraguchi T, Takasaki K, Naito T et al (2009) Cerebroprotective action of telmisartan by inhibition of macrophages/microglia expressing HMGB1 via a peroxisome proliferator-activated receptor γ-dependent mechanism. Neurosci Lett 464(3):151–155. https://doi.org/10.1016/j.neulet.2009.08.043

    Article  PubMed  CAS  Google Scholar 

  150. Gao M, Hu Z, Zheng Y et al (2011) Peroxisome proliferator-activated receptor γ agonist troglitazone inhibits high mobility group box 1 expression in endothelial cells via suppressing transcriptional activity of nuclear factor κB and activator protein 1. Shock 36(3):228–234. https://doi.org/10.1097/SHK.0b013e318225b29a

    Article  PubMed  CAS  Google Scholar 

  151. Hwang JS, Kang ES, Ham SA et al (2012) Activation of peroxisome proliferator-activated receptor γ by rosiglitazone inhibits lipopolysaccharide-induced release of high mobility group box 1. Mediators Inflamm. https://doi.org/10.1155/2012/352807

    Article  PubMed  PubMed Central  Google Scholar 

  152. de Los G, Fayos Alonso I, Liang HC, Turner SD et al (2018) The role of activator protein-1 (AP-1) family members in CD30-positive lymphomas. Cancers 10(4):93. https://doi.org/10.3390/cancers10040093

    Article  CAS  Google Scholar 

  153. Eckert RL, Adhikary G, Young CA et al (2013) AP1 transcription factors in epidermal differentiation and skin cancer. J Skin Cancer. https://doi.org/10.1155/2013/537028

    Article  PubMed  PubMed Central  Google Scholar 

  154. Xiao P, Liu XW, Zhao NN et al (2018) Correlations of neuronal apoptosis with expressions of c-Fos and c-Jun in rats with post-ischemic reconditioning damage. Eur Rev Med Pharmacol Sci 22(9):2832–2838. https://doi.org/10.26355/eurrev_201805_14984

    Article  PubMed  CAS  Google Scholar 

  155. Ameyar M, Wisniewska M, Weitzman JB (2003) A role for AP-1 in apoptosis: the case for and against. Biochimie 85(8):747–752. https://doi.org/10.1016/j.biochi.2003.09.006

    Article  PubMed  CAS  Google Scholar 

  156. Konstantinopoulos PA, Vandoros GP, Sotiropoulou-Bonikou G et al (2007) NF-kappaB/PPAR gamma and/or AP-1/PPAR gamma “on/off” switches and induction of CBP in colon adenocarcinomas: correlation with COX-2 expression. Int J Colorectal Dis 22(1):57–68. https://doi.org/10.1007/s00384-006-0112-y

    Article  PubMed  Google Scholar 

  157. Zhang Y, Wang C, Jia ZL et al (2020) Isoniazid promotes the anti-inflammatory response in zebrafish associated with regulation of the PPARγ/NF-κB/AP-1 pathway. Chem Biol Interact 316:108928. https://doi.org/10.1016/j.cbi.2019.108928

    Article  PubMed  CAS  Google Scholar 

  158. Mittal M, Siddiqui MR, Tran K et al (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20(7):1126–1167. https://doi.org/10.1089/ars.2012.5149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Zhang Y, Hu L, Cui Y et al (2014) Roles of PPARγ/NF-κB signaling pathway in the pathogenesis of intrahepatic cholestasis of pregnancy. PLoS ONE 9(1):e87343. https://doi.org/10.1371/journal.pone.0087343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Bright JJ, Kanakasabai S, Chearwae W et al (2008) PPAR regulation of inflammatory signaling in CNS diseases. PPAR Res. https://doi.org/10.1155/2008/658520

    Article  PubMed  PubMed Central  Google Scholar 

  161. Li M, Li Z, Sun X et al (2010) Heme oxygenase-1/p21WAF1 mediates peroxisome proliferator-activated receptor-gamma signaling inhibition of proliferation of rat pulmonary artery smooth muscle cells. FEBS J 277(6):1543–1550. https://doi.org/10.1111/j.1742-4658.2010.07581.x

    Article  PubMed  CAS  Google Scholar 

  162. Linares I, Farrokhi K, Echeverri J et al (2018) PPAR-gamma activation is associated with reduced liver ischemia-reperfusion injury and altered tissue-resident macrophages polarization in a mouse model. PLoS ONE 13(4):e0195212. https://doi.org/10.1371/journal.pone.0195212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Xiang S, Chen K, Xu L et al (2020) Bergenin exerts hepatoprotective effects by inhibiting the release of inflammatory factors, apoptosis and autophagy via the PPAR-γ pathway. Drug Des Dev Ther 14:129–143. https://doi.org/10.2147/DDDT.S229063

    Article  CAS  Google Scholar 

  164. Chen Y, Liu S, Chen G (2019) Aggravation of cerebral ischemia/reperfusion injury by peroxisome proliferator-activated receptor-gamma deficiency via endoplasmic reticulum stress. Med Sci Monit 25:7518–7526. https://doi.org/10.12659/MSM.915914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Morales J, Li L, Fattah FJ et al (2014) Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 24(1):15–28. https://doi.org/10.1615/critreveukaryotgeneexpr.2013006875

    Article  PubMed  PubMed Central  Google Scholar 

  166. Wu J, Tsai H, Cheung W et al (2016) PPARγ ameliorates neuronal apoptosis and ischemic brain injury via suppressing NF-κB-driven p22phox transcription. Mol Neurobiol 53:3626–3645. https://doi.org/10.1007/s12035-015-9294-z

    Article  PubMed  CAS  Google Scholar 

  167. Wu JS, Kao MH, Tsai HD et al (2018) Clinacanthus nutans mitigates neuronal apoptosis and ischemic brain damage through augmenting the C/EBPβ-Driven PPAR-γ transcription. Mol Neurobiol 55(7):5425–5438. https://doi.org/10.1007/s12035-017-0776-z

    Article  PubMed  CAS  Google Scholar 

  168. Ormerod BK, Hanft SJ, Asokan A et al (2013) PPARγ activation prevents impairments in spatial memory and neurogenesis following transient illness. Brain Behav Immun 29:28–38. https://doi.org/10.1016/j.bbi.2012.10.017

    Article  PubMed  CAS  Google Scholar 

  169. Reisman M, Adams KT (2014) Stem cell therapy: a look at current research, regulations, and remaining hurdles. P & T 39(12):846–857

    Google Scholar 

  170. Rajkovic O, Potjewyd G, Pinteaux E (2018) Regenerative medicine therapies for targeting neuroinflammation after stroke. Front Neurol 9:734. https://doi.org/10.3389/fneur.2018.00734

    Article  PubMed  PubMed Central  Google Scholar 

  171. Quintanilla RA, Utreras E, Cabezas-Opazo FA (2014) Role of PPAR γ in the differentiation and function of neurons. PPAR Res. https://doi.org/10.1155/2014/768594

    Article  PubMed  PubMed Central  Google Scholar 

  172. Cimini A, Cerù MP (2008) Emerging roles of peroxisome proliferator-activated receptors (PPARs) in the regulation of neural stem cells proliferation and differentiation. Stem Cell Rev 4(4):293–303. https://doi.org/10.1007/s12015-008-9024-2

    Article  PubMed  CAS  Google Scholar 

  173. Wada K, Nakajima A, Katayama K et al (2006) Peroxisome proliferator-activated receptor gamma-mediated regulation of neural stem cell proliferation and differentiation. J Biol Chem 281(18):12673–12681. https://doi.org/10.1074/jbc.M513786200

    Article  PubMed  CAS  Google Scholar 

  174. Xi Y, Zhang Y, Zhu S et al (2020) PPAR-mediated toxicology and applied pharmacology. Cells 9(2):352. https://doi.org/10.3390/cells9020352

    Article  PubMed Central  CAS  Google Scholar 

  175. Simons M, Nave KA (2015) Oligodendrocytes: myelination and axonal support. Cold Spring Harb Perspect Biol 8(1):a020479. https://doi.org/10.1101/cshperspect.a020479

    Article  PubMed  Google Scholar 

  176. Roth AD, Leisewitz AV, Jung JE et al (2003) PPAR gamma activators induce growth arrest and process extension in B12 oligodendrocyte-like cells and terminal differentiation of cultured oligodendrocytes. J Neurosci Res 72(4):425–435. https://doi.org/10.1002/jnr.10596

    Article  PubMed  CAS  Google Scholar 

  177. Wan Ibrahim WN, Tofighi R, Onishchenko N et al (2013) Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARγ in vitro and in vivo. Toxicol Appl Pharmacol 269(1):51–60. https://doi.org/10.1016/j.taap.2013.03.003

    Article  PubMed  CAS  Google Scholar 

  178. Yuan J, Ge H, Liu W et al (2017) M2 microglia promotes neurogenesis and oligodendrogenesis from neural stem/progenitor cells via the PPARγ signaling pathway. Oncotarget 8(12):19855–19865. https://doi.org/10.18632/oncotarget.15774

    Article  PubMed  PubMed Central  Google Scholar 

  179. Morales-Garcia JA, Luna-Medina R, Alfaro-Cervello C et al (2011) Peroxisome proliferator-activated receptor γ ligands regulate neural stem cell proliferation and differentiation in vitro and in vivo. Glia 59(2):293–307. https://doi.org/10.1002/glia.21101

    Article  PubMed  Google Scholar 

  180. Esposito G, Scuderi C, Valenza M et al (2011) Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement. PLoS ONE 6(12):e28668. https://doi.org/10.1371/journal.pone.0028668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Li L, Gan H, Jin H et al (2021) Astragaloside IV promotes microglia/macrophages M2 polarization and enhances neurogenesis and angiogenesis through PPARγ pathway after cerebral ischemia/reperfusion injury in rats. Int Immunopharmacol 92:107335. https://doi.org/10.1016/j.intimp.2020.107335

    Article  PubMed  CAS  Google Scholar 

  182. Kinouchi T, Kitazato KT, Shimada K et al (2018) Treatment with the PPARγ agonist pioglitazone in the early post-ischemia phase inhibits pro-inflammatory responses and promotes neurogenesis via the activation of innate- and bone marrow-derived stem cells in rats. Transl Stroke Res 9(3):306–316. https://doi.org/10.1007/s12975-017-0577-8

    Article  PubMed  CAS  Google Scholar 

  183. Li Y, Ren T, Xu L et al (2019) Propane-2-sulfonic acid octadec-9-enyl-amide, a novel peroxisome proliferator-activated receptors α and γ dual agonist, enhances hippocampal neurogenesis and neuroplasticity in rats with cerebral ischaemia. NeuroReport 30(18):1299–1306. https://doi.org/10.1097/WNR.0000000000001360

    Article  PubMed  CAS  Google Scholar 

  184. Font MA, Arboix A, Krupinski J (2010) Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke. Curr Cardiol Rev 6(3):238–244. https://doi.org/10.2174/157340310791658802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Kotlinowski J, Jozkowicz A (2016) PPAR gamma and angiogenesis: endothelial cells perspective. J Diabetes Res. https://doi.org/10.1155/2016/8492353

    Article  PubMed  PubMed Central  Google Scholar 

  186. de Oliveira Bristot VJ, de Bem Alves AC, Cardoso LR et al (2019) The role of PGC-1α/UCP2 signaling in the beneficial effects of physical exercise on the brain. Front Neurosci 13:292. https://doi.org/10.3389/fnins.2019.00292

    Article  PubMed  PubMed Central  Google Scholar 

  187. Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24(1):78–90. https://doi.org/10.1210/er.2002-0012

    Article  PubMed  CAS  Google Scholar 

  188. Chu K, Lee ST, Koo JS et al (2006) Peroxisome proliferator-activated receptor-gamma-agonist, rosiglitazone, promotes angiogenesis after focal cerebral ischemia. Brain Res 1093(1):208–218. https://doi.org/10.1016/j.brainres.2006.03.114

    Article  PubMed  CAS  Google Scholar 

  189. Huang PH, Sata M, Nishimatsu H et al (2008) Pioglitazone ameliorates endothelial dysfunction and restores ischemia-induced angiogenesis in diabetic mice. Biomed Pharmacother 62(1):46–52. https://doi.org/10.1016/j.biopha.2007.06.014

    Article  PubMed  CAS  Google Scholar 

  190. Biscetti F, Straface G, Arena V et al (2009) Pioglitazone enhances collateral blood flow in ischemic hindlimb of diabetic mice through an Akt-dependent VEGF-mediated mechanism, regardless of PPARgamma stimulation. Cardiovasc Diabetol 8:49. https://doi.org/10.1186/1475-2840-8-49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Annabi B, Lord-Dufour S, Vézina A et al (2012) Resveratrol targeting of carcinogen-induced brain endothelial cell inflammation biomarkers MMP-9 and COX-2 is Sirt1-independent. Drug Target Insights 6:1–11. https://doi.org/10.4137/DTI.S9442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Grewal AK, Singh N, Singh TG (2019) Effects of resveratrol postconditioning on cerebral ischemia in mice: role of the sirtuin-1 pathway. Can J Physiol Pharmacol 97(11):1094–1101. https://doi.org/10.1139/cjpp-2019-0188

    Article  PubMed  CAS  Google Scholar 

  193. Biscetti F, Pecorini G, Arena V et al (2013) Cilostazol improves the response to ischemia in diabetic mice by a mechanism dependent on PPARγ. Mol Cell Endocrinol 381(1–2):80–87. https://doi.org/10.1016/j.mce.2013.07.011

    Article  PubMed  CAS  Google Scholar 

  194. Seok H, Lee M, Shin E et al (2019) Low-dose pioglitazone can ameliorate learning and memory impairment in a mouse model of dementia by increasing LRP1 expression in the hippocampus. Sci Rep 9:4414. https://doi.org/10.1038/s41598-019-40736-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Rinwa P, Kaur B, Jaggi AS et al (2010) Involvement of PPAR-gamma in curcumin-mediated beneficial effects in experimental dementia. Naunyn-Schmied Arch Pharmacol 381:529–539. https://doi.org/10.1007/s00210-010-0511-z

    Article  CAS  Google Scholar 

  196. McTigue DM, Tripathi R, Wei P et al (2007) The PPAR gamma agonist Pioglitazone improves anatomical and locomotor recovery after rodent spinal cord injury. Exp Neurol 205(2):396–406. https://doi.org/10.1016/j.expneurol.2007.02.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Ma Y, Sullivan JC, Schreihofer DA (2010) Dietary genistein and equol (4’, 7 isoflavandiol) reduce oxidative stress and protect rats against focal cerebral ischemia. Am J Physiol 299(3):R871–R877. https://doi.org/10.1152/ajpregu.00031.2010

    Article  CAS  Google Scholar 

  198. Rehni AK, Singh TG, Kakkar T et al (2011) Involvement of src-kinase activation in ischemic preconditioning induced protection of mouse brain. Life Sci 88(19–20):825–829. https://doi.org/10.1016/j.lfs.2011.02.024

    Article  PubMed  CAS  Google Scholar 

  199. Magi S, Piccirillo S, Amoroso S et al (2019) Excitatory amino acid transporters (EAATs): glutamate transport and beyond. Int J Mol Sci 20(22):5674. https://doi.org/10.3390/ijms20225674

    Article  PubMed Central  CAS  Google Scholar 

  200. Liu AJ, Hu YY, Li WB et al (2011) Cerebral ischemic pre-conditioning enhances the binding characteristics and glutamate uptake of glial glutamate transporter-1 in hippocampal CA1 subfield of rats. J Neurochem 119(1):202–209. https://doi.org/10.1111/j.1471-4159.2011.07396.x

    Article  PubMed  CAS  Google Scholar 

  201. Zhao CC, Jiang MY, Zhang LY et al (2019) Peroxisome proliferator-activated receptor gamma participates in the acquisition of brain ischemic tolerance induced by ischemic preconditioning via glial glutamate transporter 1 in vivo and in vitro. J Neurochem 151(5):608–625. https://doi.org/10.1111/jnc.14824

    Article  PubMed  CAS  Google Scholar 

  202. Kawahara K, Yanoma J, Tanaka M et al (2004) Nitric oxide produced during ischemia is toxic but crucial to preconditioning-induced ischemic tolerance of neurons in culture. Neurochem Res 29(4):797–804. https://doi.org/10.1023/b:nere.0000018853.30131.4d

    Article  PubMed  CAS  Google Scholar 

  203. Dirnagl U, Becker K, Meisel A (2009) Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 8(4):398–412. https://doi.org/10.1016/S1474-4422(09)70054-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Blanco M, Moro MA, Dávalos A et al (2005) Increased plasma levels of 15-deoxyDelta prostaglandin J2 are associated with good outcome in acute atherothrombotic ischemic stroke. Stroke 36(6):1189–1194. https://doi.org/10.1161/01.STR.0000166054.55993.e5

    Article  PubMed  CAS  Google Scholar 

  205. Romera C, Hurtado O, Mallolas J et al (2007) Ischemic preconditioning reveals that GLT1/EAAT2 glutamate transporter is a novel PPARgamma target gene involved in neuroprotection. J Cerebr Blood Flow Metab 27(7):1327–1338. https://doi.org/10.1038/sj.jcbfm.9600438

    Article  CAS  Google Scholar 

  206. Wynne AM, Mocanu MM, Yellon DM (2005) Pioglitazone mimics preconditioning in the isolated perfused rat heart: a role for the prosurvival kinases PI3K and P42/44MAPK. J Cardiovasc Pharmacol 46(6):817–822. https://doi.org/10.1097/01.fjc.0000188365.07635.57

    Article  PubMed  CAS  Google Scholar 

  207. Moolman JA, Hartley S, Van Wyk J et al (2006) Inhibition of myocardial apoptosis by ischaemic and beta-adrenergic preconditioning is dependent on p38 MAPK. Cardiovasc Drugs Ther 20(1):13–25. https://doi.org/10.1007/s10557-006-6257-7

    Article  PubMed  CAS  Google Scholar 

  208. Li J, Lang MJ, Mao XB et al (2008) Antiapoptosis and mitochondrial effect of pioglitazone preconditioning in the ischemic/reperfused heart of rat. Cardiovasc Drugs Ther 22(4):283–291. https://doi.org/10.1007/s10557-008-6115-x

    Article  PubMed  CAS  Google Scholar 

  209. Ren Y, Wang C, Xu J et al (2019) Cafestol and kahweol: a review on their bioactivities and pharmacological properties. Int J Mol Sci 20(17):4238. https://doi.org/10.3390/ijms20174238

    Article  PubMed Central  CAS  Google Scholar 

  210. Caiozzi G, Wong BS, Ricketts ML (2012) Dietary modification of metabolic pathways via nuclear hormone receptors. Cell Biochem Funct 30(7):531–551. https://doi.org/10.1002/cbf.2842

    Article  PubMed  CAS  Google Scholar 

  211. Ji J, Wu L, Feng J et al (2020) Cafestol preconditioning attenuates apoptosis and autophagy during hepatic ischemia-reperfusion injury by inhibiting ERK/PPARγ pathway. Int Immunopharmacol 84:106529. https://doi.org/10.1016/j.intimp.2020.106529

    Article  PubMed  CAS  Google Scholar 

  212. Zeng Y, Xie K, Dong H et al (2012) Hyperbaric oxygen preconditioning protects cortical neurons against oxygen-glucose deprivation injury: role of peroxisome proliferator-activated receptor-gamma. Brain Res 1452:140–150. https://doi.org/10.1016/j.brainres.2012.02.063

    Article  PubMed  CAS  Google Scholar 

  213. Bassaganya-Riera J, Reynolds K, Martino-Catt S et al (2004) Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127(3):777–791. https://doi.org/10.1053/j.gastro.2004.06.049

    Article  PubMed  CAS  Google Scholar 

  214. Słowikowski BK, Drzewiecka H, Malesza M et al (2020) The influence of conjugated linoleic acid on the expression of peroxisome proliferator-activated receptor-γ and selected apoptotic genes in non-small cell lung cancer. Mol Cell Biochem 466(1–2):65–82. https://doi.org/10.1007/s11010-020-03689-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Chambrier C, Bastard JP, Rieusset J et al (2002) Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor gamma. Obes Res 10(6):518–525. https://doi.org/10.1038/oby.2002.70

    Article  PubMed  CAS  Google Scholar 

  216. Zirpoli H, Chang CL, Carpentier YA et al (2020) Novel approaches for omega-3 fatty acid therapeutics: chronic versus acute administration to protect heart, brain, and spinal cord. Annu Rev Nutr 40:161–187. https://doi.org/10.1146/annurev-nutr-082018-124539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Abdelrahman M, Sivarajah A, Thiemermann C (2005) Beneficial effects of PPAR-gamma ligands in ischemia-reperfusion injury, inflammation and shock. Cardiovasc Res 65(4):772–781. https://doi.org/10.1016/j.cardiores.2004.12.008

    Article  PubMed  CAS  Google Scholar 

  218. Itoh T, Fairall L, Amin K et al (2008) Structural basis for the activation of PPARgamma by oxidized fatty acids. Nat Struct Mol Biol 15(9):924–931. https://doi.org/10.1038/nsmb.1474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Bazan NG (2009) Cellular and molecular events mediated by docosahexaenoic acid-derived neuroprotectin D1 signaling in photoreceptor cell survival and brain protection. Prostaglandins Leukot Essent Fatty Acids 81(2–3):205–211. https://doi.org/10.1016/j.plefa.2009.05.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Zhao Y, Calon F, Julien C et al (2011) Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARγ-mediated mechanisms in Alzheimer’s disease models. PLoS ONE 6(1):e15816. https://doi.org/10.1371/journal.pone.0015816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Bazan NG (2012) Neuroinflammation and proteostasis are modulated by endogenously biosynthesized neuroprotectin D1. Mol Neurobiol 46(1):221–226. https://doi.org/10.1007/s12035-012-8322-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Belayev L, Freitas RS, Marcell SJ et al (2017) Chapter 52—lipid mediators. In: Caplan LR, Biller J, Leary MC, Lo EH, Thomas AJ, Yenari M, Zhang JH (eds) Primer on cerebrovascular diseases, 2nd edn. Academic Press, London, pp 256–260

    Chapter  Google Scholar 

  223. Liao Z, Dong J, Wu W et al (2012) Resolvin D1 attenuates inflammation in lipopolysaccharide-induced acute lung injury through a process involving the PPARγ/NF-κB pathway. Respir Res 13(1):110. https://doi.org/10.1186/1465-9921-13-110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Saito T, Hasegawa-Moriyama M, Kurimoto T et al (2015) Resolution of inflammation by resolvin D1 is essential for peroxisome proliferator-activated receptor-γ-mediated analgesia during postincisional pain development in Type 2 diabetes. Anesthesiology 123(6):1420–1434. https://doi.org/10.1097/ALN.0000000000000892

    Article  PubMed  CAS  Google Scholar 

  225. Villacorta L, Zhang J, Garcia-Barrio MT et al (2007) Nitro-linoleic acid inhibits vascular smooth muscle cell proliferation via the Keap1/Nrf2 signaling pathway. Am J Physiol 293(1):770–776. https://doi.org/10.1152/ajpheart.00261.2007

    Article  CAS  Google Scholar 

  226. Panati K, Subramani PA, Reddy MM et al (2019) The nitrated fatty acid, 10-nitrooleate inhibits the neutrophil chemotaxis via peroxisome proliferator-activated receptor gamma in CLP-induced sepsis in mice. Int Immunopharmacol 72:159–165. https://doi.org/10.1016/j.intimp.2019.04.001

    Article  PubMed  CAS  Google Scholar 

  227. Nie H, Xue X, Li J et al (2015) Nitro-oleic acid attenuates OGD/R-triggered apoptosis in renal tubular cells via inhibition of Bax mitochondrial translocation in a PPAR-γ-dependent manner. Cell Physiol Biochem 35(3):1201–1218. https://doi.org/10.1159/000373944

    Article  PubMed  CAS  Google Scholar 

  228. Mazidi M, Karimi E, Meydani M et al (2016) Potential effects of curcumin on peroxisome proliferator-activated receptor-γ in vitro and in vivo. World J Methodol 6(1):112–117. https://doi.org/10.5662/wjm.v6.i1.112

    Article  PubMed  PubMed Central  Google Scholar 

  229. Choi JH, Jin SW, Choi CY et al (2017) Capsaicin inhibits dimethylnitrosamine-induced hepatic fibrosis by inhibiting the TGF-β1/Smad pathway via peroxisome proliferator-activated receptor gamma activation. J Agric Food Chem 65(2):317–326. https://doi.org/10.1021/acs.jafc.6b04805

    Article  PubMed  CAS  Google Scholar 

  230. Robich MP, Osipov RM, Chu LM et al (2011) Resveratrol modifies risk factors for coronary artery disease in swine with metabolic syndrome and myocardial ischemia. Eur J Pharmacol 664(1–3):45–53. https://doi.org/10.1016/j.ejphar.2011.04.059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Aires V, Brassart B, Carlier A et al (2014) A role for peroxisome proliferator-activated receptor gamma in resveratrol-induced colon cancer cell apoptosis. Mol Nutr Food Res 58(9):1785–1794. https://doi.org/10.1002/mnfr.201300962

    Article  PubMed  CAS  Google Scholar 

  232. Calleri E, Pochetti G, Dossou K et al (2014) Resveratrol and its metabolites bind to PPARs. ChemBioChem 15(8):1154–1160. https://doi.org/10.1002/cbic.201300754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Park JW, Jang YH, Kim JM et al (2009) Green tea polyphenol (-)-epigallocatechin gallate reduces neuronal cell damage and up-regulation of MMP-9 activity in hippocampal CA1 and CA2 areas following transient global cerebral ischemia. J Neurosci Res 87(2):567–575. https://doi.org/10.1002/jnr.21847

    Article  PubMed  CAS  Google Scholar 

  234. Wang S, Wang J, Wei H et al (2020) Genistein attenuates acute cerebral ischemic damage by inhibiting the NLRP3 inflammasome in reproductively senescent mice. Front Aging Neurosci 12:153. https://doi.org/10.3389/fnagi.2020.00153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Xiong D, Deng Y, Huang B et al (2016) Icariin attenuates cerebral ischemia-reperfusion injury through inhibition of inflammatory response mediated by NF-κB, PPARα and PPARγ in rats. Int Immunopharmacol 30:157–162. https://doi.org/10.1016/j.intimp.2015.11.035

    Article  PubMed  CAS  Google Scholar 

  236. Ban K, Sprunt JM, Martin S et al (2011) Glutamine activates peroxisome proliferator-activated receptor-γ in intestinal epithelial cells via 15-S-HETE and 13-OXO-ODE: a novel mechanism. Am J Physiol Gastrointest Liver Physiol 301(3):G547–G554. https://doi.org/10.1152/ajpgi.00174.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Wang AL, Niu Q, Shi N et al (2015) Glutamine ameliorates intestinal ischemia-reperfusion injury in rats by activating the Nrf2/Are signaling pathway. Int J Clin Exp Pathol 8(7):7896–7904

    PubMed  PubMed Central  Google Scholar 

  238. Berni Canani R, Di Costanzo M, Leone L (2012) The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenet 4(1):4. https://doi.org/10.1186/1868-7083-4-4

    Article  CAS  Google Scholar 

  239. Takaki K, Mitsuyama K, Tsuruta O et al (2006) Attenuation of experimental colonic injury by thiazolidinedione agents. Inflamm Res 55(1):10–15. https://doi.org/10.1007/s00011-005-0002-8

    Article  PubMed  CAS  Google Scholar 

  240. Dworzanski T, Celinski K, Korolczuk A et al (2010) Influence of the peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, rosiglitazone and antagonist, biphenol-A-diglicydyl ether (BADGE) on the course of inflammation in the experimental model of colitis in rats. J Physiol Pharmacol 61(6):683–693

    PubMed  CAS  Google Scholar 

  241. Zingarelli B, Sheehan M, Hake PW et al (2003) Peroxisome proliferator activator receptor-gamma ligands, 15-deoxy-Delta(12,14)-prostaglandin J2 and ciglitazone, reduce systemic inflammation in polymicrobial sepsis by modulation of signal transduction pathways. J Immunol 171(12):6827–6837. https://doi.org/10.4049/jimmunol.171.12.6827

    Article  PubMed  CAS  Google Scholar 

  242. Ryu S, Kim DS, Lee MW et al (2018) Anti-leukemic effects of PPARγ ligands. Cancer Lett 418:10–19. https://doi.org/10.1016/j.canlet.2018.01.020

    Article  PubMed  CAS  Google Scholar 

  243. Murray JR, de la Vega L, Hayes JD et al (2019) Induction of the antioxidant response by the transcription factor NRF2 increases bioactivation of the mutagenic air pollutant 3-nitrobenzanthrone in human lung cells. Chem Res Toxicol 32(12):2538–2551. https://doi.org/10.1021/acs.chemrestox.9b00399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Wang YY, Yang YX, Zhe H et al (2014) Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties. Drug Des Dev Ther 8:2075–2088. https://doi.org/10.2147/DDDT.S68872

    Article  Google Scholar 

  245. Monsalve FA, Pyarasani RD, Delgado-Lopez F et al (2013) Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediators Inflamm. https://doi.org/10.1155/2013/549627

    Article  PubMed  PubMed Central  Google Scholar 

  246. Ribeiro Filho HV, Bernardi Videira N, Bridi AV et al (2018) Screening for PPAR non-agonist ligands followed by characterization of a hit, AM-879, with additional no-adipogenic and cdk5-mediated phosphorylation inhibition properties. Front Endocrinol 9:11. https://doi.org/10.3389/fendo.2018.00011

    Article  Google Scholar 

  247. Birrell MA, Patel HJ, McCluskie K et al (2004) PPAR-gamma agonists as therapy for diseases involving airway neutrophilia. Eur Respir J 24(1):18–23. https://doi.org/10.1183/09031936.04.00098303

    Article  PubMed  CAS  Google Scholar 

  248. Perrotta C, Pellegrino P, Moroni E et al (2015) Five-aminosalicylic Acid: an update for the reappraisal of an old drug. Gastroenterol Res Pract. https://doi.org/10.1155/2015/456895

    Article  PubMed  PubMed Central  Google Scholar 

  249. Yousefipour Z, Chug N, Marek K et al (2017) Contribution of PPARγ in modulation of acrolein-induced inflammatory signaling in gp91phox knock-out mice. Biochem Cell Biol 95(4):482–490. https://doi.org/10.1139/bcb-2016-0198

    Article  PubMed  CAS  Google Scholar 

  250. Kurebayashi S, Xu X, Ishii S et al (2005) A novel thiazolidinedione MCC-555 down-regulates tumor necrosis factor-alpha-induced expression of vascular cell adhesion molecule-1 in vascular endothelial cells. Atherosclerosis 182(1):71–77. https://doi.org/10.1016/j.atherosclerosis.2005.02.004

    Article  PubMed  CAS  Google Scholar 

  251. Sharma S, Sowjanya A, Kumari M et al (2006) Biochemical mechanism of insulin sensitization, lipid modulation and anti-atherogenic potential of PPAR alpha/gamma dual agonist: ragaglitazar. Life Sci 80(3):235–244. https://doi.org/10.1016/j.lfs.2006.09.009

    Article  PubMed  CAS  Google Scholar 

  252. Massaro M, Scoditti E, Pellegrino M et al (2016) Therapeutic potential of the dual peroxisome proliferator activated receptor (PPAR)α/γ agonist aleglitazar in attenuating TNF-α-mediated inflammation and insulin resistance in human adipocytes. Pharmacol Res 107:125–136. https://doi.org/10.1016/j.phrs.2016.02.027

    Article  PubMed  CAS  Google Scholar 

  253. Wang Y, Yang YS, Tang XC et al (2011) T33, a novel peroxisome proliferator-activated receptor γ/α agonist, exerts neuroprotective action via its anti-inflammatory activities. Acta Pharmacol Sin 32(9):1100–1108. https://doi.org/10.1038/aps.2011.69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Zhang H, You L, Zhao M (2019) Rosiglitazone attenuates paraquat-induced lung fibrosis in rats in a PPAR gamma-dependent manner. Eur J Pharmacol 851:133–143. https://doi.org/10.1016/j.ejphar.2019.02.037

    Article  PubMed  CAS  Google Scholar 

  255. Rieusset J, Touri F, Michalik L et al (2002) A new selective peroxisome proliferator-activated receptor gamma antagonist with antiobesity and antidiabetic activity. Mol Endocrinol (Baltimore, Md) 16(11):2628–2644. https://doi.org/10.1210/me.2002-0036

    Article  CAS  Google Scholar 

  256. Yu L, Su X, Li S et al (2020) Microglia and their promising role in ischemic brain injuries: an update. Front Cell Neurosci 14:211. https://doi.org/10.3389/fncel.2020.00211

    Article  PubMed  PubMed Central  Google Scholar 

  257. https://www.clinicaltrials.gov/

  258. Hong SJ, Choi SC, Ahn CM et al (2011) Telmisartan reduces neointima volume and pulse wave velocity 8 months after zotarolimus-eluting stent implantation in hypertensive type 2 diabetic patients. Heart (British Cardiac Society) 97(17):1425–1432. https://doi.org/10.1136/hrt.2011.225193

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, India for providing the necessary facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Conceived and designed the experiments: TGS. Analyzed the data: AM, HKK Wrote the manuscript: AM, NG. Visualization: HKK. Editing of the Manuscript: TGS. Critically reviewed the article: TGS. Supervision: TGS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thakur Gurjeet Singh.

Ethics declarations

Competing interests

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mannan, A., Garg, N., Singh, T.G. et al. Peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ): Molecular Effects and Its Importance as a Novel Therapeutic Target for Cerebral Ischemic Injury. Neurochem Res 46, 2800–2831 (2021). https://doi.org/10.1007/s11064-021-03402-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03402-1

Keywords

Navigation