Skip to main content

Advertisement

Log in

Multitarget Effect of 2-(4-(Methylthio)phenyl)-3-(3-(piperidin-1-yl)propyl)thiazolidin-4-one in a Scopolamine-Induced Amnesic Rat Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cholinergic system dysfunction, oxidative damage, and alterations in ion pump activity have been associated with memory loss and cognitive deficits in Alzheimer’s disease. 1,3-thiazolidin-4-ones have emerged as a class of compounds with potential therapeutic effects due to their potent anticholinesterase activity. Accordingly, this study investigated the effect of the 2-(4-(methylthio)phenyl)-3-(3-(piperidin-1-yl)propyl)thiazolidin-4-one (DS12) compound on memory, cholinergic and oxidative stress parameters, ion pump activity, and serum biochemical markers in a scopolamine-induced memory deficit model. Male Wistar rats were divided into four groups: I-Control; II-Scopolamine; III-DS12 (5 mg/kg) + scopolamine; and IV-DS12 (10 mg/kg) + scopolamine. The animals from groups III and IV received DS12 diluted in canola oil and administered for 7 days by gavage. On the last day of treatment, scopolamine (1 mg/kg) was administered intraperitoneally (i.p.) 30 min after training in an inhibitory avoidance apparatus. Twenty-four hours after scopolamine administration, the animals were subjected to an inhibitory avoidance test and were thereafter euthanized. Scopolamine induced memory deficits, increased acetylcholinesterase activity and oxidative damage, and decreased Na+/K+-ATPase activity in cerebral cortex and hippocampus. Pretreatment with DS12 prevented these brain alterations. Scopolamine also induced an increase in acetylcholinesterase activity in lymphocytes and whereas butyrylcholinesterase in serum and treatment with DS12 prevented these changes. In animals treated with DS12, no changes were observed in renal and hepatic parameters when compared to the control group. In conclusion, DS12 emerged as an important multitarget compound capable of preventing neurochemical changes associated with memory deficits.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bai P, Wang K, Zhang P, Shi J, Cheng X, Zhang Q, Zheng C, Cheng Y, Yang J, Lu X, Sang Z (2009) Development of chalcone-O-alkylamine derivatives as multifunctional agents against Alzheimer’s disease. Eur J M Chem 183:111737. https://doi.org/10.1016/j.ejmech.2019.111737

    Article  CAS  Google Scholar 

  2. Denver P, McClean P (2018) Distinguishing normal brain aging from the development of Alzheimer’s disease: inflammation, insulin signaling and cognition. Neural Regen Res 13:1719–1730. https://doi.org/10.4103/1673-5374.238608

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weller J, Budson A (2018) Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Rev 7:1161. https://doi.org/10.12688/f1000research.14506.1

  4. Joe E, Ringman J (2019) Cognitive symptoms of Alzheimer’s disease: clinical management and prevention. BMJ 367:l6217. https://doi.org/10.1136/bmj.l6217

    Article  PubMed  Google Scholar 

  5. Kumar A, Nisha C, Silakari C, Sharma I, Anusha K, Gupta N, Nair P, Tripathi T, Kumar A (2016) Current and novel therapeutic molecules and targets in Alzheimer’s disease. J Formos Med Assoc 115:3–10. https://doi.org/10.1016/j.jfma.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  6. Kumar D, Gupta SK, Ganeshpurkar A, Gutti G, Krishnamurthy S, Modi G, Singh SK (2018) Development of Piperazinediones as dual inhibitor for treatment of Alzheimer’s disease. Eur J Med Chem 150:87–101. https://doi.org/10.1016/j.ejmech.2018.02.078

    Article  CAS  PubMed  Google Scholar 

  7. Xie S, Wang XB, Li J, Yang L, Kong L (2013) Design, synthesis and evaluation of novel tacrine-coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer’s disease. Eur J Med Chem 64:540–553. https://doi.org/10.1016/j.ejmech.2013.03.051

    Article  CAS  PubMed  Google Scholar 

  8. Tang KS (2019) The cellular and molecular processes associated with scopolamine-induced memory deficit: a model of Alzheimer’s biomarkers. Life Sci 223:116695. https://doi.org/10.1016/j.lfs.2019.116695

    Article  CAS  Google Scholar 

  9. Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S, Nath C, Tyagi N (2016) Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutics strategies. Mol Neurobiol 53:648–661. https://doi.org/10.1007/s12035-014-9053-6

    Article  CAS  PubMed  Google Scholar 

  10. Ishola I, Akinyede A, Eloke JE, Chaturvedi JP, Narender T (2019) Diastereomeric mixture of calophyllic and isocalophyllic acid ameliorates scopolamine-induced memory impairment in mice: involvement of antioxidant defense and cholinergic systems. Neurotox Res 37:58–66. https://doi.org/10.1007/s12640-019-00117-8

    Article  CAS  PubMed  Google Scholar 

  11. Malviyaa M, Kumar YCS, Mythri RB, Venkateshappa C, Subhash MN, Rangappa KS (2009) Muscarinic receptor 1 agonist activity of novel N-aryl carboxamide substituted 3-morpholino arecoline derivatives in Alzheimer’s presenile dementia models. Bioorg Med Chem 17:5526–5534. https://doi.org/10.1016/j.bmc.2009.06.032

    Article  CAS  Google Scholar 

  12. Sadashiva CT, Chandra J, Kavitha CV, Thimmegowda A, Subhash MN, Rangappa KS (2009) Synthesis and pharmacological evaluation of novel N-alkyl/aryl substituted thiazolidinone arecoline analogues as muscarinic receptor 1 agonist in Alzheimer’s dementia models. Eur J Med Chem 44:4848–4854. https://doi.org/10.1016/j.ejmech.2009.07.026

    Article  CAS  PubMed  Google Scholar 

  13. Silva DS, Soares MSP, Martini F, Pesarico AP, Mattos B, Souza AA, Silva CEH, Scaini JLR, Machado KS, Nogueira CW, Spanevello RM, Cunico W (2020) In vitro effects of 2-{4-[methylthio(methylsulfonyl)]phenyl}-3-substitutedthiazolidin-4-ones on the acetylcholinesterase activity in rat brain and lymphocytes: isoform selectivity, kinetic analysis, and molecular docking. Neurochem Res 45:241–253. https://doi.org/10.1007/s11064-019-02929-8

    Article  CAS  PubMed  Google Scholar 

  14. Berwaldt GA, Gouvêa DP, Silva DS, Neves AM, Soares MSP, Azambuja JH, Siqueira GM, Spanevello RM, Cunico W (2019) Synthesis and biological evaluation of benzothiazin-4-ones: a possible new class of acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 34:197–203. https://doi.org/10.1080/14756366.2018.1543286

    Article  CAS  PubMed  Google Scholar 

  15. Silva D, Silva C, Soares M, Azambuja J, Carvalho T, Zimmer G, Frizzo C, Braganhol E, Spanevello R, Cunico W (2016) Thiazolidin-4-ones from 4-(methylthio)benzaldehyde and 4-(methylsulfonyl)benzaldehyde: synthesis, antiglioma activity and cytotoxicity. Eur J Med Chem 124:574–582. https://doi.org/10.1016/j.ejmech.2016.08.057

    Article  CAS  PubMed  Google Scholar 

  16. Ali EH, Arafa NM (2011) Comparative protective action of curcumin, memantine and diclofenac against scopolamine-induced memory dysfunction. Fitoterapia 82:601–608. https://doi.org/10.1016/j.fitote.2011.01.016

    Article  CAS  PubMed  Google Scholar 

  17. Marisco P, Carvalho F, Rosa M, Girardi B, Gutierres J, Jaques J, Salla A, Pimentel V, Schetinger M, Leal D, Mello C, Rubin M (2013) Piracetam prevents scopolamine-induced memory impairment and decrease of NTPDase, 5-nucleotidase and adenosine deaminase activities. Neurochem Res 38:1704–1714. https://doi.org/10.1007/s11064-013-1072-6

    Article  CAS  PubMed  Google Scholar 

  18. Da Silveira EF, Azambuja JH, Carvalho TR, Kunzler A, Silva DS, Teixeira FC, Rodrigues R, Beira FT, Alvez RCSA, Spanevello RM, Cunico W, Stefanello FM, Horn AP, Braganhol E (2017) Synthetic 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones exhibit selective in vitro antitumoral activity and inhibit cancer cell growth in a preclinical model of glioblastoma multiforme. Chem Biol Interact 266:1–9. https://doi.org/10.1016/j.cbi.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  19. Da Silveira EF, Ferreira LM, Gehrcke M, Cruz L, Pedra NS, Ramos PT, Bona NP, Soares MSP, Rodrigues R, Spanevello RM, Cunico W, Stefanello FM, Azambuja JH, Horn AP, Braganhol E (2019) 2-(2-Methoxyphenyl)-3-((piperidin-1-yl)ethyl) thiazolidin-4-one-loaded polymeric nanocapsules. In vitro antiglioma activity and in vivo toxicity evaluation. Cell Mol Neurobiol 39:783–797. https://doi.org/10.1007/s10571-019-00678-4

    Article  CAS  PubMed  Google Scholar 

  20. Ellman G, Courtney K, Andres V, Featherstone R (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 17:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  Google Scholar 

  21. Wyse A, Streck E, Barros S, Brusque A, Zugno A, Wajner M (2007) Methylmalonate administration decreases Na+, K+-ATPase activity in cerebral cortex of rats. NeuroReport 11:2331–2334. https://doi.org/10.1097/00001756-200007140-00052

    Article  Google Scholar 

  22. Chan K, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+–ATPase activity. Anal Biochem 157:1375–1378. https://doi.org/10.1016/0003-2697(86)90640-8

    Article  Google Scholar 

  23. Ali SF, LeBel CP, Bondy SC (1992) Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 13:637–648

    CAS  PubMed  Google Scholar 

  24. Stuehr DJ, Nathan CF (1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169:1543–1555. https://doi.org/10.1084/jem.169.5.1543

    Article  CAS  PubMed  Google Scholar 

  25. Aksenov MY, Markesbery WR (2011) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145. https://doi.org/10.1016/S0304-3940(01)01636-6

    Article  Google Scholar 

  26. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421. https://doi.org/10.1016/0076-6879(90)86134-H

    Article  CAS  PubMed  Google Scholar 

  27. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    Article  CAS  PubMed  Google Scholar 

  28. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  29. Böyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl 97:77–89

    PubMed  Google Scholar 

  30. Jaques JAS, Rezer JF, Ruchel JB, Gutierres J, Bairros AV, Farias IL, Luz S, Bertoncheli C, Schetinger M, Morsch V, Leal D (2011) A method for isolation of rat lymphocyte-rich mononuclear cells from lung tissue useful for determination of nucleoside triphosphate diphosphohydrolase activity. Anal Biochem 410:34–39. https://doi.org/10.1016/j.ab.2010.10.039

    Article  CAS  PubMed  Google Scholar 

  31. Fitzgerald B, Costa L (1993) Modulation of muscarinic receptors an acetylcholinesterase activity in lymphocytes and brain areas following repeated organophosphate exposure in rats. Fund Appl Toxicol 20:210–216. https://doi.org/10.1006/faat.1993.1028

    Article  CAS  Google Scholar 

  32. Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  33. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  34. Barkur R, Bairy L (2015) Evaluation of passive avoidance learning and spatial memory in rats exposed to low levels of lead during specific periods of early brain development. Int J Occup Med Environ Health 28:533–544

    Article  Google Scholar 

  35. Auti ST, Kulkarni YA (2019) Neuroprotective effect of cardamom oil against aluminum induced neurotoxicity in rats. Front Neurol 10:399. https://doi.org/10.3389/fneur.2019.00399

    Article  PubMed  PubMed Central  Google Scholar 

  36. Teixeira F, Gutierres J, Soares M, Mattos B, Spohr L, Couto C, Bona N, Assmann C, Morsch V, Cruz I, Stefanello F, Spanevello RM (2020) Inosine protects against impairment of memory induced by experimental model of Alzheimer disease: a nucleoside with multitarget brain actions. Psychopharmacology 237:811–823. https://doi.org/10.1007/s00213-019-05419-5

    Article  CAS  PubMed  Google Scholar 

  37. Wang D, Hu M, Li X, Zhang D, Chen C, Fu J, Shao S, Shi G, Zhou Y, Wu S, Zhang T (2019) Design, synthesis, and evaluation of isoflavone analogs as multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem 168:207–220. https://doi.org/10.1016/j.ejmech.2019.02.053

    Article  CAS  PubMed  Google Scholar 

  38. Gutierres JM, Carvalho FB, Schetinger MRC, Agostinho P, Marisco PC, Vieira JM, Rosa MM, Bohnert C, Rubin MA, Morsch VM, Spanevello R, Mazzanti CM (2014) Neuroprotective effect of anthocyanins on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia in rats. Int J Dev Neurosci 33:88–97. https://doi.org/10.1016/j.ijdevneu.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  39. Preston AR, Eichenbaum H (2013) Interplay of hippocampus and prefrontal cortex in memory. Curr Biol 23:764–773. https://doi.org/10.1016/j.cub.2013.05.041

    Article  CAS  Google Scholar 

  40. Yao Z, Zhang Y, Lin L, Zhou Y, Xu C, Jiang T (2010) Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Comput Biol 18:e1001006. https://doi.org/10.1371/journal.pcbi.1001006

    Article  CAS  Google Scholar 

  41. Bartorelli L, Giraldi C, Saccardo M, Cammarata S, Bottini G, Fasanaro AM, Trequattrini A (2005) Effects of switching from an AChE inhibitor to a dual AChE-BuChE inhibitor in patients with Alzheimer’s disease. Curr Med Res Opin 21:1809–1817. https://doi.org/10.1185/030079905X65655

    Article  CAS  PubMed  Google Scholar 

  42. Sun K, Bai Y, Zhao R, Guo Z, Su X, Li P, Yang P (2019) Neuroprotective effects of matrine on scopolamine-induced amnesia via inhibition of AChE/BuChE and oxidative stress. Metab Brain Dis 34:173–181. https://doi.org/10.1007/s11011-018-0335-y

    Article  CAS  PubMed  Google Scholar 

  43. Holm T, Isaksen T, Glerup S, Heuck A, Bøttger P, Füchtbauer E, Nedergaard E, Nyengaard J, Andreasen M, Nissen P, Lykke-Hartmann K (2016) Cognitive deficits caused by a disease-mutation in the α3 Na+/K+-ATPase isoform. Sci Rep 23:31972. https://doi.org/10.1038/srep31972

    Article  CAS  Google Scholar 

  44. Zhang L, Suna Y, Panb S, Lic J, Qud J, Lia Y, Wang Y, Gao Z (2013) Na+-K+-ATPase, a potent neuroprotective modulator against Alzheimer disease. Fund Clin Pharmacol 27:96–103. https://doi.org/10.1111/fcp.12000

    Article  CAS  Google Scholar 

  45. Luchese C, Vogt A, Pinz M, Reis A, Gomes C, Alves D, Wilhelm E (2020) Amnesia-ameliorative effect of a quinoline derivative through regulation of oxidative/cholinergic systems and Na+/K+-ATPase activity in mice. Metab Brain Dis 35:589–600. https://doi.org/10.1007/s11011-020-00535-0

    Article  CAS  PubMed  Google Scholar 

  46. Silva F, Pinz M, Oliveira R, Rodrigues K, Ianiski F, Bassaco M, Silveira C, Jesse C, Roman S, Wilhelm E, Luchese C (2017) Organosulfur compound protects against memory decline induced by scopolamine through modulation of oxidative stress and Na+/K+ ATPase activity in mice. Metab Brain Dis 32:1819–1828. https://doi.org/10.1007/s11011-017-0067-4

    Article  CAS  PubMed  Google Scholar 

  47. Fan Y, Hu J, Li J, Yang Z, Xin X, Wang J, Ding J, Geng M (2005) Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci Lett 374:222–226. https://doi.org/10.1016/j.neulet.2004.10.063

    Article  CAS  PubMed  Google Scholar 

  48. Ajami M, Eghtesadia S, Habibeyb R, Razaz JM, Peyrovid H, Zarrindast M, Pazoki-Toroudib H (2012) Effect of short and long-term treatment with omega-3 fatty acids on scopolamine-induced amnesia. Iran J Pharm Res 11:533–540

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hancianu M, Cioanca O, Mihasan M, Hritcu L (2013) Neuroprotective effects of inhaled lavender oil on scopolamine-induced dementia via anti-oxidative activities in rats. Phytomedicine 20:446–452. https://doi.org/10.1016/j.phymed.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  50. Qu Z, Zhang J, Yang H, Gao J, Chen H, Liu C, Gao W (2017) Prunella vulgaris L., an edible and medicinal plant, attenuates scopolamine-induced memory impairment in rats. Agric Food Chem 65:291–300. https://doi.org/10.1021/acs.jafc.6b04597

    Article  CAS  Google Scholar 

  51. Agostinho P, Cunha R, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2766–2778. https://doi.org/10.2174/138161210793176572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors tank veterinarian doctor Anelize de Oliveira Campello Felix for helping with animal experimentation.

Funding

This research was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS—PRONEM processo: 16/2551–0000 2452). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)—Finance code 001. W. C. and R. M. S. are recipients of the CNPq fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roselia Maria Spanevello or Wilson Cunico.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Approval

All animal experimental protocols were approved by the Committee of Ethics and Animal Experimentation of the Federal University of Pelotas, RS, Brazil (protocol number: CEEA 46528-2018).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, D.S., Soares, M.S.P., Teixeira, F.C. et al. Multitarget Effect of 2-(4-(Methylthio)phenyl)-3-(3-(piperidin-1-yl)propyl)thiazolidin-4-one in a Scopolamine-Induced Amnesic Rat Model. Neurochem Res 46, 1554–1566 (2021). https://doi.org/10.1007/s11064-021-03295-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03295-0

Keywords

Navigation