Skip to main content

Advertisement

Log in

Salidroside Inhibits Reactive Astrogliosis and Glial Scar Formation in Late Cerebral Ischemia via the Akt/GSK-3β Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cerebral ischemia leads to reactive astrogliosis and glial scar formation. Glial scarring can impede functional restoration during the recovery phase of stroke. Salidroside has been shown to have neuroprotective effects after ischemic stroke, but its impact on long-term neurological recovery, especially whether it regulates reactive astrogliosis and glial scar formation, is unclear. In this study, male adult C57/BL6 mice were subjected to transient cerebral ischemia injury followed by intravenous salidroside treatment. Primary astrocytes were treated with lipopolysaccharide (LPS) or conditioned medium from cultured primary neurons subjected to oxygen-glucose deprivation (CM-OGD). Salidroside significantly improved long-term functional outcomes following ischemic stroke in the rotarod and corner tests. It also reduced brain glial scar volume and decreased expression of the glial scar marker, glial fibrillary acidic protein (GFAP) and inhibited astrocyte proliferation. In primary astrocyte cultures, salidroside protected astrocytes from CM-OGD injury-induced reactive astroglial proliferation, increasing the percentage of cells in G0/G1 phase and reducing the S populations. The inhibitory effect of salidroside on the cell cycle was related to downregulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4) mRNA expression and increased p27Kip1 mRNA expression. Similar results were found in the LPS-stimulated injury model in astroglial cultures. Western blot analysis demonstrated that salidroside attenuated the CM-OGD-induced upregulation of phosphorylated Akt and glycogen synthase kinase 3β (GSK-3β). Taken together, these results suggested that salidroside can inhibit reactive astrocyte proliferation, ameliorate glial scar formation and improve long-term recovery, probably through its effects on the Akt/GSK-3β pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BrdU:

5-bromo-2′-deoxyuridine

CDK4:

Cyclin-dependent kinase 4

CM-OGD:

Conditioned medium suffering from oxygen-glucose deprivation

CNS:

Central nervous system

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

GFAP:

Glial fibrillary acidic protein

GSK-3β:

Glycogen synthase kinase 3β

LPS:

Lipopolysaccharide

MAP2:

Microtubule-associated protein 2

MCAO:

Middle cerebral artery occlusion

OGD:

Oxygen-glucose deprivation

PBS:

Phosphate buffered saline

SD:

Sprague-Dawley

tPA:

Tissue plasminogen activator.

References

  1. Feigin VL, Krishnamurthi RV, Parmar P et al (2015) Update on the global burden of ischemic and hemorrhagic stroke in 1990-2013: the GBD 2013 study. Neuroepidemiology 45:161–176

    Article  PubMed  Google Scholar 

  2. Avan A, Digaleh H, Di Napoli M et al (2019) Socioeconomic status and stroke incidence, prevalence, mortality, and worldwide burden: an ecological analysis from the global burden of disease study 2017. BMC Med 17:191

    Article  PubMed  PubMed Central  Google Scholar 

  3. Damani R (2018) A brief history of acute stroke care. Aging (Albany NY) 10:1797–1798

    Article  Google Scholar 

  4. Chapman SN, Mehndiratta P, Johansen MC et al (2014) Current perspectives on the use of intravenous recombinant tissue plasminogen activator (tPA) for treatment of acute ischemic stroke. Vasc Health Risk Manag 10:75–87

    PubMed  PubMed Central  Google Scholar 

  5. Dewar B, Shamy M (2020) tPA for acute ischemic stroke and its controversies: a review. Neurohospitalist 10:5–10

    Article  PubMed  Google Scholar 

  6. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    Article  CAS  PubMed  Google Scholar 

  7. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  8. Wang C, Jie C, Dai X (2014) Possible roles of astrocytes in estrogen neuroprotection during cerebral ischemia. Rev Neurosci 25:255–268

    Article  CAS  PubMed  Google Scholar 

  9. Dias DO, Goritz C (2018) Fibrotic scarring following lesions to the central nervous system. Matrix Biol 68-69:561–570

    Article  CAS  PubMed  Google Scholar 

  10. Cregg JM, DePaul MA, Filous AR et al (2014) Functional regeneration beyond the glial scar. Exp Neurol 253:197–207

    Article  PubMed  Google Scholar 

  11. Sun L, Zhang Y, Liu E et al (2019) The roles of astrocyte in the brain pathologies following ischemic stroke. Brain Inj 33:712–716

    Article  PubMed  Google Scholar 

  12. Chiang HM, Chen HC, Wu CS et al (2015) Rhodiola plants: chemistry and biological activity. J Food Drug Anal 23:359–369

    Article  CAS  PubMed  Google Scholar 

  13. Pu WL, Zhang MY, Bai RY et al (2020) Anti-inflammatory effects of Rhodiola rosea L.: a review. Biomed Pharmacother 121:109552

    Article  CAS  PubMed  Google Scholar 

  14. Han J, Xiao Q, Lin YH et al (2015) Neuroprotective effects of salidroside on focal cerebral ischemia/reperfusion injury involve the nuclear erythroid 2-related factor 2 pathway. Neural Regen Res 10:1989–1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen T, Ma Z, Zhu L et al (2016) Suppressing receptor-interacting protein 140: a new sight for Salidroside to treat cerebral ischemia. Mol Neurobiol 53:6240–6250

    Article  CAS  PubMed  Google Scholar 

  16. Liu X, Wen S, Yan F et al (2018) Salidroside provides neuroprotection by modulating microglial polarization after cerebral ischemia. J Neuroinflammation 15:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhang X, Du Q, Yang Y et al (2018) Salidroside alleviates ischemic brain injury in mice with ischemic stroke through regulating BDNK mediated PI3K/Akt pathway. Biochem Pharmacol 156:99–108

    Article  CAS  PubMed  Google Scholar 

  18. Yu S, Xu H, Chi X et al (2018) 2-(4-Methoxyphenyl)ethyl-2-Acetamido-2-deoxy-beta-d-pyranoside (A Salidroside analog) confers neuroprotection with a wide therapeutic window by regulating local glucose metabolism in a rat model of cerebral ischemic injury. Neuroscience 391:60–72

    Article  CAS  PubMed  Google Scholar 

  19. Zuo W, Yan F, Zhang B et al (2018) Salidroside improves brain ischemic injury by activating PI3K/Akt pathway and reduces complications induced by delayed tPA treatment. Eur J Pharmacol 830:128–138

    Article  CAS  PubMed  Google Scholar 

  20. Wei Y, Hong H, Zhang X et al (2017) Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40:1297–1309

    Article  CAS  PubMed  Google Scholar 

  21. Lai W, Xie X, Zhang X et al (2018) Inhibition of complement drives increase in early growth response proteins and neuroprotection mediated by Salidroside after cerebral ischemia. Inflammation 41:449–463

    Article  CAS  PubMed  Google Scholar 

  22. Shi TY, Feng SF, Xing JH et al (2012) Neuroprotective effects of Salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro. Neurotox Res 21:358–367

    Article  CAS  PubMed  Google Scholar 

  23. Hu X, Li P, Guo Y et al (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43:3063–3070

    Article  CAS  PubMed  Google Scholar 

  24. Zhang L, Schallert T, Zhang ZG et al (2002) A test for detecting long-term sensorimotor dysfunction in the mouse after focal cerebral ischemia. J Neurosci Methods 117:207–214

    Article  PubMed  Google Scholar 

  25. Liu X, Liu J, Zhao S et al (2016) Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke 47:498–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ciccarelli R, D’Alimonte I, Ballerini P et al (2007) Molecular signalling mediating the protective effect of A1 adenosine and mGlu3 metabotropic glutamate receptor activation against apoptosis by oxygen/glucose deprivation in cultured astrocytes. Mol Pharmacol 71:1369–1380

    Article  CAS  PubMed  Google Scholar 

  27. Huang XQ, Zhang XY, Wang XR et al (2012) Transforming growth factor beta1-induced astrocyte migration is mediated in part by activating 5-lipoxygenase and cysteinyl leukotriene receptor 1. J Neuroinflammation 9:145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Y, Zhang J, Deng M (2015) Furin mediates brain-derived neurotrophic factor upregulation in cultured rat astrocytes exposed to oxygen-glucose deprivation. J Neurosci Res 93:189–194

    Article  CAS  PubMed  Google Scholar 

  29. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46:957–967

    Article  CAS  PubMed  Google Scholar 

  30. Tu Z, Li Y, Dai Y et al (2017) MiR-140/BDNF axis regulates normal human astrocyte proliferation and LPS-induced IL-6 and TNF-alpha secretion. Biomed Pharmacother 91:899–905

    Article  CAS  PubMed  Google Scholar 

  31. Cui QL, Almazan G (2007) IGF-I-induced oligodendrocyte progenitor proliferation requires PI3K/Akt, MEK/ERK, and Src-like tyrosine kinases. J Neurochem 100:1480–1493

    CAS  PubMed  Google Scholar 

  32. Lu Y, Lei S, Wang N et al (2016) Protective effect of minocycline against ketamine-induced injury in neural stem cell: involvement of PI3K/Akt and Gsk-3 Beta pathway. Front Mol Neurosci 9:135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65:391–426

    Article  CAS  PubMed  Google Scholar 

  34. Jung EM, Ka M, Kim WY (2016) Loss of GSK-3 causes abnormal Astrogenesis and behavior in mice. Mol Neurobiol 53:3954–3966

    Article  CAS  PubMed  Google Scholar 

  35. Polyak K, Kato JY, Solomon MJ et al (1994) p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8:9–22

    Article  CAS  PubMed  Google Scholar 

  36. Ding S (2014) Dynamic reactive astrocytes after focal ischemia. Neural Regen Res 9:2048–2052

    Article  PubMed  PubMed Central  Google Scholar 

  37. Robel S (2017) Astroglial scarring and seizures: a cell biological perspective on epilepsy. Neuroscientist 23:152–168

    Article  PubMed  Google Scholar 

  38. Curia G, Lucchi C, Vinet J et al (2014) Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic? Curr Med Chem 21:663–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  CAS  PubMed  Google Scholar 

  40. Nigg EA (1995) Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays 17:471–480

    Article  CAS  PubMed  Google Scholar 

  41. Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1:222–231

    Article  CAS  PubMed  Google Scholar 

  42. Nakayama KI, Hatakeyama S, Nakayama K (2001) Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1. Biochem Biophys Res Commun 282:853–860

    Article  CAS  PubMed  Google Scholar 

  43. Di Giovanni S, Movsesyan V, Ahmed F et al (2005) Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 102:8333–8338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhu Z, Zhang Q, Yu Z et al (2007) Inhibiting cell cycle progression reduces reactive astrogliosis initiated by scratch injury in vitro and by cerebral ischemia in vivo. Glia 55:546–558

    Article  PubMed  Google Scholar 

  45. Choi JS, Park HJ, Kim HY et al (2005) Phosphorylation of PTEN and Akt in astrocytes of the rat hippocampus following transient forebrain ischemia. Cell Tissue Res 319:359–366

    Article  CAS  PubMed  Google Scholar 

  46. Diehl JA, Cheng M, Roussel MF et al (1998) Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12:3499–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu XJ, Han QB, Wen ZS et al (2012) Gambogenic acid induces G1 arrest via GSK3beta-dependent cyclin D1 degradation and triggers autophagy in lung cancer cells. Cancer Lett 322:185–194

    Article  CAS  PubMed  Google Scholar 

  48. Tseng AS, Engel FB, Keating MT (2006) The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem Biol 13:957–963

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

XL and CD designed the study. CD, SW, SZ, and XL performed the experiments. SW, SS, and WD analyzed the data. CD, SZ, PH, QC, TG, WC and WL arranged the Figs. CD and XL wrote the draft, SZ and SS revised the draft. All the authors approved the final version of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (81871021, 81471209, 81641055) and the National Science and Technology Major Project (2017ZX09304018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangrong Liu.

Ethics declarations

Conflict of interest

The authors claim no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, C., Wen, S., Zhao, S. et al. Salidroside Inhibits Reactive Astrogliosis and Glial Scar Formation in Late Cerebral Ischemia via the Akt/GSK-3β Pathway. Neurochem Res 46, 755–769 (2021). https://doi.org/10.1007/s11064-020-03207-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03207-8

Keywords

Navigation