Skip to main content

Advertisement

Log in

SIRT1 Mediates H2S-Ameliorated Diabetes-Associated Cognitive Dysfunction in Rats: Possible Involvement of Inhibiting Hippocampal Endoplasmic Reticulum Stress and Synaptic Dysfunction

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Diabetes-associated cognitive dysfunction (DACD) characterized by hippocampal injury increases the risk of major cerebrovascular events and death. Endoplasmic reticulum (ER) stress and synaptic dysfunction play vital roles in the pathological process. At present, no specific treatment exists for the prevention and/or the therapy of DACD. We have recently reported that hydrogen sulfide (H2S) exhibits therapeutic potential for DACD, but the underlying mechanism has not been fully elucidated. Silent information regulator 1 (SIRT1) has been shown to play a role in regulating the progression of diabetes and is also indispensable for memory formation and cognitive performance. Hence, the present study was performed to explore whether SIRT1 mediates the protective effect of H2S on streptozotocin (STZ)-induced cognitive deficits, an in vivo rat model of DACD, via inhibiting hippocampal ER stress and synaptic dysfunction. The results showed that administration of NaHS (an exogenous H2S donor) increased the expression of SIRT1 in the hippocampus of STZ-induced diabetic rats. Then, results proved that sirtinol, a special blocker of SIRT1, abrogated the inhibition of NaHS on STZ-induced cognitive deficits, as appraised by Morris water maze test, Y-maze test, and Novel object recognition behavioral test. In addition, administration of NaHS eliminated STZ-induced ER stress as evidenced by the decreases in the expressions of ER stress-related proteins including glucose-regulated protein 78, C/EBP homologous protein, and cleaved caspase-12 in the hippocampus, while these effects of NaHS were also reverted by sirtinol. Furthermore, the NaHS-induced up-regulation of hippocampal synapse-related protein (synapsin-1, SYN1) expression in STZ-induced diabetic rats was also abolished by sirtinol. Taken together, these results demonstrated that SIRT1 mediates the protection of H2S against cognitive dysfunction in STZ-diabetic rats partly via inhibiting hippocampal ER stress and synaptic dysfunction.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mauricio D, Alonso N, Gratacos M (2020) Chronic diabetes complications: the need to move beyond classical concepts. Trends Endocrinol Metab. https://doi.org/10.1016/j.tem.2020.01.007

    Article  PubMed  Google Scholar 

  2. van Duinkerken E, Ryan CM (2019) Diabetes mellitus in the young and the old: effects on cognitive functioning across the life span. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2019.104608

    Article  PubMed  Google Scholar 

  3. Kubota K, Nakano M, Kobayashi E, Mizue Y, Chikenji T, Otani M, Nagaishi K et al (2018) An enriched environment prevents diabetes-induced cognitive impairment in rats by enhancing exosomal miR-146a secretion from endogenous bone marrow-derived mesenchymal stem cells. PLoS ONE 13(9):e0204252. https://doi.org/10.1371/journal.pone.0204252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCrimmon RJ, Ryan CM, Frier BM (2012) Diabetes and cognitive dysfunction. Lancet 379(9833):2291–2299. https://doi.org/10.1016/S0140-6736(12)60360-2

    Article  PubMed  Google Scholar 

  5. Tian X, Liu Y, Ren G, Yin L, Liang X, Geng T, Dang H et al (2016) Resveratrol limits diabetes-associated cognitive decline in rats by preventing oxidative stress and inflammation and modulating hippocampal structural synaptic plasticity. Brain Res 1650:1–9. https://doi.org/10.1016/j.brainres.2016.08.032

    Article  CAS  PubMed  Google Scholar 

  6. Kassab S, Begley P, Church SJ, Rotariu SM, Chevalier-Riffard C, Dowsey AW, Phillips AM et al (2019) Cognitive dysfunction in diabetic rats is prevented by pyridoxamine treatment. A multidisciplinary investigation. Mol Metab 28:107–119. https://doi.org/10.1016/j.molmet.2019.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li HY, Wang XC, Xu YM, Luo NC, Luo S, Hao XY, Cheng SY et al (2018) Berberine improves diabetic encephalopathy through the SIRT1/ER stress pathway in db/db mice. Rejuvenation Res 21(3):200–209. https://doi.org/10.1089/rej.2017.1972

    Article  CAS  PubMed  Google Scholar 

  8. Zou W, Yuan J, Tang ZJ, Wei HJ, Zhu WW, Zhang P, Gu HF et al (2017) Hydrogen sulfide ameliorates cognitive dysfunction in streptozotocin-induced diabetic rats: involving suppression in hippocampal endoplasmic reticulum stress. Oncotarget 8(38):64203–64216. https://doi.org/10.18632/oncotarget.19448

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kong FJ, Ma LL, Guo JJ, Xu LH, Li Y, Qu S (2018) Endoplasmic reticulum stress/autophagy pathway is involved in diabetes-induced neuronal apoptosis and cognitive decline in mice. Clin Sci 132(1):111–125. https://doi.org/10.1042/CS20171432

    Article  CAS  Google Scholar 

  10. Ye T, Meng X, Wang R, Zhang C, He S, Sun G, Sun X (2018) Gastrodin alleviates cognitive dysfunction and depressive-like behaviors by inhibiting ER stress and NLRP3 inflammasome activation in db/db mice. Int J Mol Sci 19(12):3977. https://doi.org/10.3390/ijms19123977

    Article  PubMed Central  Google Scholar 

  11. Nuzum H, Stickel A, Corona M, Zeller M, Melrose RJ, Wilkins SS (2020) Potential benefits of physical activity in MCI and dementia. Behav Neurol 2020:7807856. https://doi.org/10.1155/2020/7807856

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang X, Bian JS (2014) Hydrogen sulfide: a neuromodulator and neuroprotectant in the central nervous system. ACS Chem Neurosci 5(10):876–883. https://doi.org/10.1021/cn500185g

    Article  CAS  PubMed  Google Scholar 

  13. Gao C, Chang P, Yang L, Wang Y, Zhu S, Shan H, Zhang M et al (2018) Neuroprotective effects of hydrogen sulfide on sodium azide-induced oxidative stress in PC12 cells. Int J Mol Med 41(1):242–250. https://doi.org/10.3892/ijmm.2017.3227

    Article  CAS  PubMed  Google Scholar 

  14. Zhan JQ, Zheng LL, Chen HB, Yu B, Wang W, Wang T, Ruan B et al (2018) Hydrogen sulfide reverses aging-associated amygdalar synaptic plasticity and fear memory deficits in rats. Front Neurosci 12:390. https://doi.org/10.3389/fnins.2018.00390

    Article  PubMed  PubMed Central  Google Scholar 

  15. He JT, Li H, Yang L, Mao CY (2019) Role of hydrogen sulfide in cognitive deficits: evidences and mechanisms. Eur J Pharmacol 849:146–153. https://doi.org/10.1016/j.ejphar.2019.01.072

    Article  CAS  PubMed  Google Scholar 

  16. Kumar G, Chhabra A, Mishra S, Kalam H, Kumar D, Meena R, Ahmad Y et al (2016) H2S regulates hypobaric hypoxia-induced early glio-vascular dysfunction and neuro-pathophysiological effects. EBioMedicine 6:171–89. https://doi.org/10.1016/j.ebiom.2016.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ma S, Zhong D, Ma P, Li G, Hua W, Sun Y, Liu N et al (2017) Exogenous hydrogen sulfide ameliorates diabetes-associated cognitive decline by regulating the mitochondria-mediated apoptotic pathway and IL-23/IL-17 expression in db/db mice. Cell Physiol Biochem 41(5):1838–1850. https://doi.org/10.1159/000471932

    Article  CAS  PubMed  Google Scholar 

  18. Cao Y, Yan Z, Zhou T, Wang G (2017) SIRT1 regulates cognitive performance and ability of learning and memory in diabetic and nondiabetic models. J Diabetes Res 2017:7121827. https://doi.org/10.1155/2017/7121827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao W, Dou Y, Li A (2018) Resveratrol boosts cognitive function by targeting SIRT1. Neurochem Res 43(9):1705–1713. https://doi.org/10.1007/s11064-018-2586-8

    Article  CAS  PubMed  Google Scholar 

  20. Yu Y, Zhao Y, Teng F, Li J, Guan Y, Xu J, Lv X et al (2018) Berberine improves cognitive deficiency and muscular dysfunction via activation of the AMPK/SIRT1/PGC-1a pathway in skeletal muscle from naturally aging rats. J Nutr Health Aging 22(6):710–717. https://doi.org/10.1007/s12603-018-1015-7

    Article  CAS  PubMed  Google Scholar 

  21. Escribano-Lopez I, Diaz-Morales N, Iannantuoni F, Lopez-Domenech S, de Maranon AM, Abad-Jimenez Z, Banuls C et al (2018) The mitochondrial antioxidant SS-31 increases SIRT1 levels and ameliorates inflammation, oxidative stress and leukocyte-endothelium interactions in type 2 diabetes. Sci Rep 8(1):15862. https://doi.org/10.1038/s41598-018-34251-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu Y, Hu R, He D, Zhou G, Wu H, Xu C, He B et al (2020) Bisdemethoxycurcumin inhibits oxidative stress and antagonizes Alzheimer’s disease by up-regulating SIRT1. Brain Behav. https://doi.org/10.1002/brb3.1655

    Article  PubMed  PubMed Central  Google Scholar 

  23. Han J, Liu X, Li Y, Zhang J, Yu H (2018) Sirt1/Nrf2 signalling pathway prevents cognitive impairment in diabetic rats through antioxidative stress induced by miRNA23b3p expression. Mol Med Rep 17(6):8414–8422. https://doi.org/10.3892/mmr.2018.8876

    Article  CAS  PubMed  Google Scholar 

  24. Du LL, Xie JZ, Cheng XS, Li XH, Kong FL, Jiang X, Ma ZW et al (2014) Activation of sirtuin 1 attenuates cerebral ventricular streptozotocin-induced tau hyperphosphorylation and cognitive injuries in rat hippocampi. Age 36(2):613–623. https://doi.org/10.1007/s11357-013-9592-1

    Article  CAS  PubMed  Google Scholar 

  25. Li XN, Chen L, Luo B, Li X, Wang CY, Zou W, Zhang P et al (2017) Hydrogen sulfide attenuates chronic restrain stress-induced cognitive impairment by upreglulation of Sirt1 in hippocampus. Oncotarget 8(59):100396–100410. https://doi.org/10.18632/oncotarget.22237

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tang YY, Wang AP, Wei HJ, Li MH, Zou W, Li X, Wang CY et al (2018) Role of silent information regulator 1 in the protective effect of hydrogen sulfide on homocysteine-induced cognitive dysfunction: Involving reduction of hippocampal ER stress. Behav Brain Res 342:35–42. https://doi.org/10.1016/j.bbr.2017.12.040

    Article  CAS  PubMed  Google Scholar 

  27. Liu SY, Li D, Zeng HY, Kan LY, Zou W, Zhang P, Gu HF et al (2017) Hydrogen sulfide inhibits chronic unpredictable mild stress-induced depressive-like behavior by upregulation of sirt-1: involvement in suppression of hippocampal endoplasmic reticulum stress. Int J Neuropsychopharmacol 20(11):867–876. https://doi.org/10.1093/ijnp/pyx030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tan S, Song L, Wang M, Zhao W, Yang Y (2018) ARF influences diabetes through promoting the proliferation and malignant development of beta cells. Artif Cells Nanomed Biotechnol 46(sup3):S702–S706. https://doi.org/10.1080/21691401.2018.1505750

    Article  CAS  PubMed  Google Scholar 

  29. Chen N, Jiang K, Yan GG (2019) Effect of fenofibrate on diabetic retinopathy in rats via SIRT1/NF-kappaB signaling pathway. Eur Rev Med Pharmacol Sci 23(19):8630–8636. https://doi.org/10.26355/eurrev_201910_19180

    Article  CAS  PubMed  Google Scholar 

  30. Van Can M, Tran AH, Pham DM, Dinh BQ, Van Le Q, Van Nguyen B, Thi Nguyen MT et al (2017) Willughbeia cochinchinensis prevents scopolamine-induced deficits in memory, spatial learning, and object recognition in rodents. J Ethnopharmacol 214:99–105. https://doi.org/10.1016/j.jep.2017.06.035

    Article  PubMed  Google Scholar 

  31. Li M, Zhang P, Wei H-j, Li M-H, Zou W, Li X, Gu H-F et al (2017) Hydrogen sulfide ameliorates homocysteine-induced cognitive dysfunction by inhibition of reactive aldehydes involving upregulation of ALDH2. Int J Neuropsychopharmacol 20(4):305–315. https://doi.org/10.1093/ijnp/pyw103

    Article  CAS  PubMed  Google Scholar 

  32. Tang XQ, Zhuang YY, Zhang P, Fang HR, Zhou CF, Gu HF, Zhang H et al (2013) Formaldehyde impairs learning and memory involving the disturbance of hydrogen sulfide generation in the hippocampus of rats. J Mol Neurosci 49(1):140–149. https://doi.org/10.1007/s12031-012-9912-4

    Article  CAS  PubMed  Google Scholar 

  33. Wei HJ, Xu JH, Li MH, Tang JP, Zou W, Zhang P, Wang L et al (2014) Hydrogen sulfide inhibits homocysteine-induced endoplasmic reticulum stress and neuronal apoptosis in rat hippocampus via upregulation of the BDNF-TrkB pathway. Acta Pharmacol Sin 35(6):707–715. https://doi.org/10.1038/aps.2013.197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu M, Li Y, Liang B, Li Z, Jiang Z, Chu C, Yang J (2018) Hydrogen sulfide attenuates myocardial fibrosis in diabetic rats through the JAK/STAT signaling pathway. Int J Mol Med 41(4):1867–1876. https://doi.org/10.3892/ijmm.2018.3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guarente L, Franklin H (2011) Epstein lecture: sirtuins, aging, and medicine. N Engl J Med 364(23):2235–2244. https://doi.org/10.1056/NEJMra1100831

    Article  CAS  PubMed  Google Scholar 

  36. Yan J, Luo A, Gao J, Tang X, Zhao Y, Zhou B, Zhou Z et al (2019) The role of SIRT1 in neuroinflammation and cognitive dysfunction in aged rats after anesthesia and surgery. Am J Transl Res 11(3):1555–1568

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi J, Zou X, Jiang K, Wang F (2019) SIRT1 mediates improvement of cardiac surgery-induced postoperative cognitive dysfunction via the TLR4/NF-kappaB pathway. World J Biol Psychiatry. https://doi.org/10.1080/15622975.2019.1656820

    Article  PubMed  Google Scholar 

  38. Kumar R, Chaterjee P, Sharma PK, Singh AK, Gupta A, Gill K, Tripathi M et al (2013) Sirtuin1: a promising serum protein marker for early detection of Alzheimer’s disease. PLoS ONE 8(4):e61560. https://doi.org/10.1371/journal.pone.0061560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao K, Dong YT, Xiang J, Xu Y, Hong W, Song H, Guan ZZ (2018) Reduced expression of SIRT1 and SOD-1 and the correlation between these levels in various regions of the brains of patients with Alzheimer’s disease. J Clin Pathol 71(12):1090–1099. https://doi.org/10.1136/jclinpath-2018-205320

    Article  CAS  PubMed  Google Scholar 

  40. Corpas R, Revilla S, Ursulet S, Castro-Freire M, Kaliman P, Petegnief V, Gimenez-Llort L et al (2017) SIRT1 overexpression in mouse hippocampus induces cognitive enhancement through proteostatic and neurotrophic mechanisms. Mol Neurobiol 54(7):5604–5619. https://doi.org/10.1007/s12035-016-0087-9

    Article  CAS  PubMed  Google Scholar 

  41. Hong-Qiang H, Mang-Qiao S, Fen X, Shan-Shan L, Hui-Juan C, Wu-Gang H, Wen-Jun Y et al (2018) Sirt1 mediates improvement of isoflurane-induced memory impairment following hyperbaric oxygen preconditioning in middle-aged mice. Physiol Behav 195:1–8. https://doi.org/10.1016/j.physbeh.2018.07.017

    Article  CAS  PubMed  Google Scholar 

  42. Arumugam TV, Kennedy BK (2018) H2S to mitigate vascular aging: a SIRT1 connection. Cell 173(1):8–10. https://doi.org/10.1016/j.cell.2018.03.011

    Article  CAS  PubMed  Google Scholar 

  43. Guan R, Cai Z, Wang J, Ding M, Li Z, Xu J, Li Y et al (2019) Hydrogen sulfide attenuates mitochondrial dysfunction-induced cellular senescence and apoptosis in alveolar epithelial cells by upregulating sirtuin 1. Aging 11(24):11844–11864. https://doi.org/10.18632/aging.102454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu L, Chen Y, Wang CY, Tang YY, Huang HL, Kang X, Li X et al (2019) Hydrogen sulfide inhibits high glucose-induced neuronal senescence by improving autophagic flux via up-regulation of SIRT1. Front Mol Neurosci 12:194. https://doi.org/10.3389/fnmol.2019.00194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiang C, Wang Y, Zhang H, Han F (2017) The role of endoplasmic reticulum stress in neurodegenerative disease. Apoptosis 22(1):1–26. https://doi.org/10.1007/s10495-016-1296-4

    Article  CAS  PubMed  Google Scholar 

  46. Zhang HY, Wang ZG, Lu XH, Kong XX, Wu FZ, Lin L, Tan X et al (2015) Endoplasmic reticulum stress: relevance and therapeutics in central nervous system diseases. Mol Neurobiol 51(3):1343–1352. https://doi.org/10.1007/s12035-014-8813-7

    Article  CAS  PubMed  Google Scholar 

  47. Penke B, Bogar F, Fulop L (2016) Protein folding and misfolding, endoplasmic reticulum stress in neurodegenerative diseases: in trace of novel drug targets. Curr Protein Pept Sci 17(2):169–182. https://doi.org/10.2174/1389203716666151102104653

    Article  CAS  PubMed  Google Scholar 

  48. Zhang X, Xu L, He D, Ling S (2013) Endoplasmic reticulum stress-mediated hippocampal neuron apoptosis involved in diabetic cognitive impairment. Biomed Res Int 2013:924327. https://doi.org/10.1155/2013/924327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ye T, Meng X, Zhai Y, Xie W, Wang R, Sun G, Sun X (2018) Gastrodin ameliorates cognitive dysfunction in diabetes rat model via the suppression of endoplasmic reticulum stress and NLRP3 inflammasome activation. Front Pharmacol 9:1346. https://doi.org/10.3389/fphar.2018.01346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Humeau Y, Choquet D (2019) The next generation of approaches to investigate the link between synaptic plasticity and learning. Nat Neurosci 22(10):1536–1543. https://doi.org/10.1038/s41593-019-0480-6

    Article  CAS  PubMed  Google Scholar 

  51. Mirza FJ, Zahid S (2018) The role of synapsins in neurological disorders. Neurosci Bull 34(2):349–358. https://doi.org/10.1007/s12264-017-0201-7

    Article  CAS  PubMed  Google Scholar 

  52. Michan S, Li Y, Chou MM, Parrella E, Ge H, Long JM, Allard JS et al (2010) SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 30(29):9695–9707. https://doi.org/10.1523/JNEUROSCI.0027-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81671057) and the Hunan Provincial Natural Science Foundation of China (2019JJ50546, 2019JJ80101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Mei Jiang or Ping Zhang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (RAR 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Chen, Z., Kang, X. et al. SIRT1 Mediates H2S-Ameliorated Diabetes-Associated Cognitive Dysfunction in Rats: Possible Involvement of Inhibiting Hippocampal Endoplasmic Reticulum Stress and Synaptic Dysfunction. Neurochem Res 46, 611–623 (2021). https://doi.org/10.1007/s11064-020-03196-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03196-8

Keywords

Navigation