Skip to main content

Advertisement

Log in

Activation of sirtuin 1 attenuates cerebral ventricular streptozotocin-induced tau hyperphosphorylation and cognitive injuries in rat hippocampi

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Patients with diabetes in the aging population are at high risk of Alzheimer's disease (AD), and reduction of sirtuin 1 (SIRT1) activity occurs simultaneously with the accumulation of hyperphosphorylated tau in the AD-affected brain. It is not clear, however, whether SIRT1 is a suitable molecular target for the treatment of AD. Here, we employed a rat model of brain insulin resistance with intracerebroventricular injection of streptozotocin (ICV-STZ; 3 mg/kg, twice with an interval of 48 h). The ICV-STZ-treated rats were administrated with resveratrol (RSV; SIRT1-specific activator) or a vehicle via intraperitoneal injection for 8 weeks (30 mg/kg, once per day). In ICV-STZ-treated rats, the levels of phosphorylated tau and phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2) at the hippocampi were increased significantly, whereas SIRT1 activity was decreased without change of its expression level. The capacity of spatial memory was also significantly lower in ICV-STZ-treated rats compared with age-matched control. RSV, a specific activator of SIRT1, which reversed the ICV-STZ-induced decrease in SIRT1 activity, increases in ERK1/2 phosphorylation, tau phosphorylation, and impairment of cognitive capability in rats. In conclusion, SIRT1 protects hippocampus neurons from tau hyperphosphorylation and prevents cognitive impairment induced by ICV-STZ brain insulin resistance with decreased hippocampus ERK1/2 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB (2011) Diabetes mellitus and Alzheimer's disease: shared pathology and treatment? Br J Clin Pharmacol 71(3):365–376. doi:10.1111/j.1365-2125.2010.03830.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305(5686):1010–1013. doi:10.1126/science.1098014

    Article  CAS  PubMed  Google Scholar 

  • Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA (2004) Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol 61(5):661–666. doi:10.1001/archneur.61.5.661

    Article  PubMed  Google Scholar 

  • Baluchnejadmojarad T, Roghani M (2006) Effect of naringenin on intracerebroventricular streptozotocin-induced cognitive deficits in rat: a behavioral analysis. Pharmacology 78(4):193–197. doi:10.1159/000096585

    Article  CAS  PubMed  Google Scholar 

  • Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L, Gu W, Accili D (2008) SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 8(4):333–341. doi:10.1016/j.cmet.2008.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biessels GJ, Kamal A, Ramakers GM, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1996a) Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 45(9):1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Biessels GJ, Stevens EJ, Mahmood SJ, Gispen WH, Tomlinson DR (1996b) Insulin partially reverses deficits in peripheral nerve blood flow and conduction in experimental diabetes. J Neurol Sci 140(1–2):12–20

    Article  CAS  PubMed  Google Scholar 

  • Braidy N, Jayasena T, Poljak A, Sachdev PS (2012) Sirtuins in cognitive ageing and Alzheimer's disease. Curr Opin Psychiatry 25(3):226–230. doi:10.1097/YCO.0b013e32835112c1

    Article  PubMed  Google Scholar 

  • Chandna S, Dwarakanath BS, Khaitan D, Mathew TL, Jain V (2002) Low-dose radiation hypersensitivity in human tumor cell lines: effects of cell-cell contact and nutritional deprivation. Radiat Res 157(5):516–525

    Article  CAS  PubMed  Google Scholar 

  • Chu WZ, Qian CY (2005) Expressions of Abeta1-40, Abeta1-42, tau202, tau396 and tau404 after intracerebroventricular injection of streptozotocin in rats. Acad J First Med Coll PLA (Di 1 jun yi da xue xue bao) 25(2):168–170, 173

    CAS  Google Scholar 

  • Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ, Lee VM (2011) The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun 2:252. doi:10.1038/ncomms1255

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Li B, Liu Y, Iqbal K, Grundke-Iqbal I, Gong CX (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: implication for Alzheimer's disease. Am J Pathol 175(5):2089–2098. doi:10.2353/ajpath.2009.090157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donmez G, Wang D, Cohen DE, Guarente L (2010) SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 142(2):320–332. doi:10.1016/j.cell.2010.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrokhnia N, Roos MW, Terent A, Lennmyr F (2005) Experimental treatment for focal hyperglycemic ischemic brain injury in the rat. Exp Brain Res 167(2):310–314. doi:10.1007/s00221-005-0157-0

    Article  CAS  PubMed  Google Scholar 

  • Gagne J, Milot M, Gelinas S, Lahsaini A, Trudeau F, Martinoli MG, Massicotte G (1997) Binding properties of glutamate receptors in streptozotocin-induced diabetes in rats. Diabetes 46(5):841–846

    Article  CAS  PubMed  Google Scholar 

  • Gardoni F, Kamal A, Bellone C, Biessels GJ, Ramakers GM, Cattabeni F, Gispent WH, Di Luca M (2002) Effects of streptozotocin-diabetes on the hippocampal NMDA receptor complex in rats. J Neurochem 80(3):438–447

    Article  CAS  PubMed  Google Scholar 

  • Gillum MP, Erion DM, Shulman GI (2010) Sirtuin-1 regulation of mammalian metabolism. Trends Mol Med 17(1):8–13. doi:10.1016/j.molmed.2010.09.005

    Google Scholar 

  • Grunblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101(3):757–770. doi:10.1111/j.1471-4159.2006.04368.x

    Article  PubMed  Google Scholar 

  • Guan QH, Pei DS, Zhang QG, Hao ZB, Xu TL, Zhang GY (2005) The neuroprotective action of SP600125, a new inhibitor of JNK, on transient brain ischemia/reperfusion-induced neuronal death in rat hippocampal CA1 via nuclear and non-nuclear pathways. Brain Res 1035(1):51–59. doi:10.1016/j.brainres.2004.11.050

    Article  CAS  PubMed  Google Scholar 

  • He QP, Ding C, Li PA (2003) Effects of hyperglycemic and normoglycemic cerebral ischemia on phosphorylation of c-jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Cell Mol Biol (Noisy-le-grand) 49(8):1241–1247

    CAS  Google Scholar 

  • Hoyer S, Lannert H (2008) Long-term effects of corticosterone on behavior, oxidative and energy metabolism of parietotemporal cerebral cortex and hippocampus of rats: comparison to intracerebroventricular streptozotocin. J Neural Transm 115(9):1241–1249. doi:10.1007/s00702-008-0079-7

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S, Lee SK, Loffler T, Schliebs R (2000) Inhibition of the neuronal insulin receptor. An in vivo model for sporadic Alzheimer disease? Ann N Y Acad Sci 920:256–258

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S, Nitsch R (1989) Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type. J Neural Transm 75(3):227–232

    Article  CAS  PubMed  Google Scholar 

  • Julien C, Tremblay C, Emond V, Lebbadi M, Salem N Jr, Bennett DA, Calon F (2009) Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 68(1):48–58. doi:10.1097/NEN.0b013e3181922348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamal A, Biessels GJ, Gispen WH, Ramakers GM (2006) Synaptic transmission changes in the pyramidal cells of the hippocampus in streptozotocin-induced diabetes mellitus in rats. Brain Res 1073–1074:276–280. doi:10.1016/j.brainres.2005.12.070

    Article  PubMed  Google Scholar 

  • Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, Puigserver P, Sinclair DA, Tsai LH (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 26(13):3169–3179. doi:10.1038/sj.emboj.7601758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurihara J, Katsura K, Siesjo BK, Wieloch T (2004) Hyperglycemia and hypercapnia differently affect post-ischemic changes in protein kinases and protein phosphorylation in the rat cingulate cortex. Brain Res 995(2):218–225

    Article  CAS  PubMed  Google Scholar 

  • Li PA, He QP, Yi-Bing O, Hu BR, Siesjo BK (2001) Phosphorylation of extracellular signal-regulated kinase after transient cerebral ischemia in hyperglycemic rats. Neurobiol Dis 8(1):127–135. doi:10.1006/nbdi.2000.0363

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Zhang W, Sima AA (2007) Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 56(7):1817–1824. doi:10.2337/db07-0171

    Article  CAS  PubMed  Google Scholar 

  • Liu WB, Li Y, Zhang L, Chen HG, Sun S, Liu JP, Liu Y, Li DW (2008) Differential expression of the catalytic subunits for PP-1 and PP-2A and the regulatory subunits for PP-2A in mouse eye. Mol Vis 14:762–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulin signalling pathway in Alzheimer's disease and diabetes. J Pathol 225(1):54–62. doi:10.1002/path.2912

    Article  CAS  PubMed  Google Scholar 

  • Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450(7170):712–716. doi:10.1038/nature06261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y, Masliah E, Mukherjee C, Meyers D, Cole PA, Ott M, Gan L (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953–966. doi:10.1016/j.neuron.2010.08.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namura S, Iihara K, Takami S, Nagata I, Kikuchi H, Matsushita K, Moskowitz MA, Bonventre JV, Alessandrini A (2001) Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc Natl Acad Sci U S A 98(20):11569–11574. doi:10.1073/pnas.181213498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei JJ, Braak H, An WL, Winblad B, Cowburn RF, Iqbal K, Grundke-Iqbal I (2002) Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer's disease. Brain Res Mol Brain Res 109(1–2):45–55

    Article  CAS  PubMed  Google Scholar 

  • Pei JJ, Gong CX, An WL, Winblad B, Cowburn RF, Grundke-Iqbal I, Iqbal K (2003) Okadaic-acid-induced inhibition of protein phosphatase 2A produces activation of mitogen-activated protein kinases ERK1/2, MEK1/2, and p70 S6, similar to that in Alzheimer's disease. Am J Pathol 163(3):845–858. doi:10.1016/S0002-9440(10)63445-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaschke K, Kopitz J, Siegelin M, Schliebs R, Salkovic-Petrisic M, Riederer P, Hoyer S (2010) Insulin-resistant brain state after intracerebroventricular streptozotocin injection exacerbates Alzheimer-like changes in Tg2576 AbetaPP-overexpressing mice. J Alzheimers Dis 19(2):691–704. doi:10.3233/JAD-2010-1270

    CAS  PubMed  Google Scholar 

  • Purushotham A, Xu Q, Li X (2012) Systemic SIRT1 insufficiency results in disruption of energy homeostasis and steroid hormone metabolism upon high-fat-diet feeding. FASEB J 26(2):656–667. doi:10.1096/fj.11-195172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT, Puigserver P, Sadoshima J, Deng H, Pedrini S, Gandy S, Sauve AA, Pasinetti GM (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281(31):21745–21754. doi:10.1074/jbc.M602909200

    Article  CAS  PubMed  Google Scholar 

  • Ramadori G, Fujikawa T, Anderson J, Berglund ED, Frazao R, Michan S, Vianna CR, Sinclair DA, Elias CF, Coppari R (2011) SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metab 14(3):301–312. doi:10.1016/j.cmet.2011.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118. doi:10.1038/nature03354

    Article  CAS  PubMed  Google Scholar 

  • Roskoski R Jr (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res Off J Ital Pharmacol Soc 66(2):105–143. doi:10.1016/j.phrs.2012.04.005

    CAS  Google Scholar 

  • Salkovic-Petrisic M, Hoyer S (2007) Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. J Neural Transm Suppl 72:217–233

    Article  CAS  PubMed  Google Scholar 

  • Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P (2006) Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 96(4):1005–1015. doi:10.1111/j.1471-4159.2005.03637.x

    Article  CAS  PubMed  Google Scholar 

  • Sanz CM, Hanaire H, Vellas BJ, Sinclair AJ, Andrieu S, Group RFS (2012) Diabetes mellitus as a modulator of functional impairment and decline in Alzheimer's disease. The Real.FR cohort. Diabet Med 29(4):541–548. doi:10.1111/j.1464-5491.2011.03445.x

    Article  CAS  PubMed  Google Scholar 

  • Shonesy BC, Thiruchelvam K, Parameshwaran K, Rahman EA, Karuppagounder SS, Huggins KW, Pinkert CA, Amin R, Dhanasekaran M, Suppiramaniam V (2012) Central insulin resistance and synaptic dysfunction in intracerebroventricular-streptozotocin injected rodents. Neurobiol Aging 33(2):430. doi:10.1016/j.neurobiolaging.2010.12.002, e435-418

    Article  PubMed  Google Scholar 

  • Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease—is this type 3 diabetes? J Alzheimers Dis 7(1):63–80

    CAS  PubMed  Google Scholar 

  • Stewart R, Liolitsa D (1999) Type 2 diabetes mellitus, cognitive impairment and dementia. Diabet Med 16(2):93–112

    Article  CAS  PubMed  Google Scholar 

  • Takata H, Ikeda Y, Suehiro T, Ishibashi A, Inoue M, Kumon Y, Terada Y (2009) High glucose induces transactivation of the alpha2-HS glycoprotein gene through the ERK1/2 signaling pathway. J Atheroscler Thromb 16(4):448–456

    Article  CAS  PubMed  Google Scholar 

  • Tjalve H, Castonguay A (1983) Distribution and metabolism in Syrian golden hamsters of 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific carcinogen. Dev Toxicol Environ Sci 11:423–427

    CAS  PubMed  Google Scholar 

  • Visser D, van Zuylen GA, van Dam JC, Eman MR, Proll A, Ras C, Wu L, van Gulik WM, Heijnen JJ (2004) Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses. Biotechnol Bioeng 88(2):157–167. doi:10.1002/bit.20235

    Article  CAS  PubMed  Google Scholar 

  • Zhang JZ, Jing L, Ma AL, Wang F, Yu X, Wang YL (2006) Hyperglycemia increased brain ischemia injury through extracellular signal-regulated protein Kinase. Pathol Res Pract 202(1):31–36. doi:10.1016/j.prp.2005.10.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Scientific Fund of China (no. 81171196) and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (no. 2012BAI10B03). CC was supported by the Australian NHMRC.

Conflict of interest

There are no actual or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Wen Zhou.

Additional information

Lai-Ling Du and Jia-Zhao Xie contributed equally to this work

About this article

Cite this article

Du, LL., Xie, JZ., Cheng, XS. et al. Activation of sirtuin 1 attenuates cerebral ventricular streptozotocin-induced tau hyperphosphorylation and cognitive injuries in rat hippocampi. AGE 36, 613–623 (2014). https://doi.org/10.1007/s11357-013-9592-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-013-9592-1

Keywords

Navigation