Skip to main content
Log in

Attenuation of Acute Intracerebral Hemorrhage-Induced Microglial Activation and Neuronal Death Mediated by the Blockade of Metabotropic Glutamate Receptor 5 In Vivo

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The activation of microglia in response to intracerebral hemorrhagic stroke is one of the principal components of the progression of this disease. It results in the formation of pro-inflammatory cytokines that lead to neuronal death, a structural deterioration that, in turn interferes with functional recovery. Metabotropic glutamate receptor 5 (mGluR5) is highly expressed in reactive microglia and is involved in the pathological processes of brain disorders, but its role in intracerebral hemorrhage (ICH) remains unknown. We hypothesized that mGluR5 regulates microglial activation and ICH maintenance. In this study, collagenase-induced ICH mice received a single intraperitoneal injection of the mGluR5 antagonist-, MTEP, or vehicle 2 h after injury. We found that acute ICH upregulated mGluR5 and microglial activation. mGluR5 was highly localized in reactive microglia in the peri-hematomal cortex and striatum on days 3 and 7 post-ICH. The MTEP-mediated pharmacological inhibition of mGluR5 in vivo resulted in the substantial attenuation of acute microglial activation and IL-6, and TNF-α release. We also showed that the blockade of mGluR5 markedly reduced cell apoptosis, and neurodegeneration and markedly elevated neuroprotection. Furthermore, the MTEP-mediated inhibition of mGluR5 significantly reduced the lesion volume and improved functional recovery. Taken together, our results demonstrate that ICH injury enhances mGluR5 expression in the acute and subacute stages and that mGluR5 is highly localized in reactive microglia. The blockade of mGluR5 reduces ICH-induced acute microglial activation, provides neuroprotection and promotes neurofunctional recovery after ICH. The inhibition of mGluR5 may be a relevant therapeutic target for intracerebral hemorrhagic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Manno EM (2012) Update on intracerebral hemorrhage. Continuum (Minneapolis, Minn) 18:598–610

    Google Scholar 

  2. Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G (1993) Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke 24:987–993

    CAS  PubMed  Google Scholar 

  3. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415

    CAS  PubMed  Google Scholar 

  4. Arif M, Kazim SF, Grundke-Iqbal I, Garruto RM, Iqbal K (2014) Tau pathology involves protein phosphatase 2A in parkinsonism-dementia of Guam. Proc Natl Acad Sci USA 111:1144–1149

    CAS  PubMed  Google Scholar 

  5. Lee RK, Wurtman RJ, Cox AJ, Nitsch RM (1995) Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc Natl Acad Sci USA 92:8083–8087

    CAS  PubMed  Google Scholar 

  6. Malter JS, Ray BC, Westmark PR, Westmark CJ (2010) Fragile X syndrome and Alzheimer's disease: another story about APP and beta-amyloid. Curr Alzheimer Res 7:200–206

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Michalon A, Sidorov M, Ballard TM, Ozmen L, Spooren W, Wettstein JG, Jaeschke G, Bear MF, Lindemann L (2012) Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 74:49–56

    CAS  PubMed  Google Scholar 

  8. Paquet M, Ribeiro FM, Guadagno J, Esseltine JL, Ferguson SS, Cregan SP (2013) Role of metabotropic glutamate receptor 5 signaling and homer in oxygen glucose deprivation-mediated astrocyte apoptosis. Mol Brain 6:9

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ribeiro FM, Devries RA, Hamilton A, Guimaraes IM, Cregan SP, Pires RG, Ferguson SS (2014) Metabotropic glutamate receptor 5 knockout promotes motor and biochemical alterations in a mouse model of Huntington's disease. Hum Mol Genet 23:2030–2042

    CAS  PubMed  Google Scholar 

  10. Ribeiro FM, Paquet M, Cregan SP, Ferguson SS (2010) Group I metabotropic glutamate receptor signalling and its implication in neurological disease. CNS Neurol Disord 9:574–595

    CAS  Google Scholar 

  11. Ribeiro FM, Paquet M, Ferreira LT, Cregan T, Swan P, Cregan SP, Ferguson SS (2010) Metabotropic glutamate receptor-mediated cell signaling pathways are altered in a mouse model of Huntington's disease. J Neurosci 30:316–324

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Thathiah A, De Strooper B (2011) The role of G protein-coupled receptors in the pathology of Alzheimer's disease. Nat Rev Neurosci 12:73–87

    CAS  PubMed  Google Scholar 

  13. Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, Kerrisk ME, Vortmeyer A, Wisniewski T, Koleske AJ, Gunther EC, Nygaard HB, Strittmatter SM (2013) Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer abeta oligomer bound to cellular prion protein. Neuron 79:887–902

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu X, Tao C, Gan Q, Zheng J, Li H, You C (2016) Oxidative stress in intracerebral hemorrhage: sources, mechanisms, and therapeutic targets. Oxid Med Cell Longev 2016:3215391

    PubMed  Google Scholar 

  16. Li H, Zhang N, Sun G, Ding S (2013) Inhibition of the group I mGluRs reduces acute brain damage and improves long-term histological outcomes after photothrombosis-induced ischaemia. ASN Neuro 5:195–207

    CAS  PubMed  Google Scholar 

  17. Prabhakaran S, Naidech AM (2012) Ischemic brain injury after intracerebral hemorrhage: a critical review. Stroke 43:2258–2263

    PubMed  Google Scholar 

  18. Righy C, Bozza MT, Oliveira MF, Bozza FA (2016) Molecular, cellular and clinical aspects of intracerebral hemorrhage: are the enemies within? Curr Neuropharmacol 14:392–402

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wagner KR (2007) Modeling intracerebral hemorrhage: glutamate, nuclear factor-kappa B signaling and cytokines. Stroke 38:753–758

    CAS  PubMed  Google Scholar 

  20. Huang Y, Shu H, Li L, Zhen T, Zhao J, Zhou X (2018) L-DOPA-Induced motor impairment and overexpression of corticostriatal synaptic components are improved by the mGluR5 antagonist MPEP in 6-OHDA-lesioned rats. ASN Neuro 10:1759091418811021

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hsieh MH, Ho SC, Yeh KY, Pawlak CR, Chang HM, Ho YJ, Lai TJ, Wu FY (2012) Blockade of metabotropic glutamate receptors inhibits cognition and neurodegeneration in an MPTP-induced Parkinson's disease rat model. Pharmacol Biochem Behav 102:64–71

    CAS  PubMed  Google Scholar 

  22. Abd-Elrahman KS, Ferguson SSG (2019) Modulation of mTOR and CREB pathways following mGluR5 blockade contribute to improved Huntington's pathology in zQ175 mice. Mol Brain 12:35

    PubMed  PubMed Central  Google Scholar 

  23. Bonifacino T, Cattaneo L, Gallia E, Puliti A, Melone M, Provenzano F, Bossi S, Musante I, Usai C, Conti F, Bonanno G, Milanese M (2017) In-vivo effects of knocking-down metabotropic glutamate receptor 5 in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Neuropharmacology 123:433–445

    CAS  PubMed  Google Scholar 

  24. Bao WL, Williams AJ, Faden AI, Tortella FC (2001) Selective mGluR5 receptor antagonist or agonist provides neuroprotection in a rat model of focal cerebral ischemia. Brain Res 922:173–179

    CAS  PubMed  Google Scholar 

  25. Makarewicz D, Duszczyk M, Gadamski R, Danysz W, Lazarewicz JW (2006) Neuroprotective potential of group I metabotropic glutamate receptor antagonists in two ischemic models. Neurochem Int 48:485–490

    CAS  PubMed  Google Scholar 

  26. Rao AM, Hatcher JF, Dempsey RJ (2000) Neuroprotection by group I metabotropic glutamate receptor antagonists in forebrain ischemia of gerbil. Neurosci Lett 293:1–4

    CAS  PubMed  Google Scholar 

  27. Szydlowska K, Kaminska B, Baude A, Parsons CG, Danysz W (2007) Neuroprotective activity of selective mGlu1 and mGlu5 antagonists in vitro and in vivo. Eur J Pharmacol 554:18–29

    CAS  PubMed  Google Scholar 

  28. Takagi N, Besshoh S, Marunouchi T, Takeo S, Tanonaka K (2012) Effects of metabotropic glutamate mGlu5 receptor antagonist on tyrosine phosphorylation of NMDA receptor subunits and cell death in the hippocampus after brain ischemia in rats. Neurosci Lett 530:91–96

    CAS  PubMed  Google Scholar 

  29. Parmentier-Batteur S, Hutson PH, Menzel K, Uslaner JM, Mattson BA, O'Brien JA, Magliaro BC, Forest T, Stump CA, Tynebor RM, Anthony NJ, Tucker TJ, Zhang XF, Gomez R, Huszar SL, Lambeng N, Faure H, Le Poul E, Poli S, Rosahl TW, Rocher JP, Hargreaves R, Williams TM (2014) Mechanism based neurotoxicity of mGlu5 positive allosteric modulators-development challenges for a promising novel antipsychotic target. Neuropharmacology 82:161–173

    CAS  PubMed  Google Scholar 

  30. Lan X, Han X, Li Q, Li Q, Gao Y, Cheng T, Wan J, Zhu W, Wang J (2017) Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia. Brain Behav Immun 61:326–339

    CAS  PubMed  Google Scholar 

  31. Lan X, Liu R, Sun L, Zhang T, Du G (2011) Methyl salicylate 2-O-beta-D-lactoside, a novel salicylic acid analogue, acts as an anti-inflammatory agent on microglia and astrocytes. J Neuroinflamm 8:98

    CAS  Google Scholar 

  32. Mracsko E, Veltkamp R (2014) Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci 8:388

    PubMed  PubMed Central  Google Scholar 

  33. Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J (2017) Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol 54:1874–1886

    CAS  PubMed  Google Scholar 

  34. Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440

    CAS  PubMed  Google Scholar 

  35. Drouin-Ouellet J, Brownell AL, Saint-Pierre M, Fasano C, Emond V, Trudeau LE, Levesque D, Cicchetti F (2011) Neuroinflammation is associated with changes in glial mGluR5 expression and the development of neonatal excitotoxic lesions. Glia 59:188–199

    PubMed  Google Scholar 

  36. Loane DJ, Stoica BA, Pajoohesh-Ganji A, Byrnes KR, Faden AI (2009) Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J Biol Chem 284:15629–15639

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Loane DJ, Stoica BA, Tchantchou F, Kumar A, Barrett JP, Akintola T, Xue F, Conn PJ, Faden AI (2014) Novel mGluR5 positive allosteric modulator improves functional recovery, attenuates neurodegeneration, and alters microglial polarization after experimental traumatic brain injury. Neurotherapeutics 11:857–869

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu F, Zhou R, Yan H, Yin H, Wu X, Tan Y, Li L (2014) Metabotropic glutamate receptor 5 modulates calcium oscillation and innate immune response induced by lipopolysaccharide in microglial cell. Neuroscience 281:24–34

    CAS  PubMed  Google Scholar 

  39. Riek-Burchardt M, Henrich-Noack P, Reymann KG (2007) No improvement of functional and histological outcome after application of the metabotropic glutamate receptor 5 agonist CHPG in a model of endothelin-1-induced focal ischemia in rats. Neurosci Res 57:499–503

    CAS  PubMed  Google Scholar 

  40. Cosford ND, Tehrani L, Roppe J, Schweiger E, Smith ND, Anderson J, Bristow L, Brodkin J, Jiang X, McDonald I, Rao S, Washburn M, Varney MA (2003) 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. J Med Chem 46:204–206

    CAS  PubMed  Google Scholar 

  41. Anderson JJ, Rao SP, Rowe B, Giracello DR, Holtz G, Chapman DF, Tehrani L, Bradbury MJ, Cosford ND, Varney MA (2002) [3H]Methoxymethyl-3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine binding to metabotropic glutamate receptor subtype 5 in rodent brain: in vitro and in vivo characterization. J Pharm Exp Ther 303:1044–1051

    CAS  Google Scholar 

  42. Cosford NDP, Roppe J, Tehrani L, Schweiger EJ, Seiders TJ, Chaudary A, Rao S, Varney MA (2003) [3H]-Methoxymethyl-MTEP and [3H]-methoxy-PEPy: potent and selective radioligands for the metabotropic glutamate subtype 5 (mGlu5) receptor. Bioorg Med Chem Lett 13:351–354

    CAS  PubMed  Google Scholar 

  43. Wu CH, Shyue SK, Hung TH, Wen S, Lin CC, Chang CF, Chen SF (2017) Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase reduces brain damage and attenuates neuroinflammation after intracerebral hemorrhage. J Neuroinflamm 14:230

    Google Scholar 

  44. Zhao M, Liang F, Xu H, Yan W, Zhang J (2016) Methylene blue exerts a neuroprotective effect against traumatic brain injury by promoting autophagy and inhibiting microglial activation. Mol Med Rep 13:13–20

    CAS  PubMed  Google Scholar 

  45. Zhang P, Lei X, Sun Y, Zhang H, Chang L, Li C, Liu D, Bhatta N, Zhang Z, Jiang C (2016) Regenerative repair of Pifithrin-alpha in cerebral ischemia via VEGF dependent manner. Sci Rep 6:26295

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ehara A, Ueda S (2009) Application of Fluoro-Jade C in acute and chronic neurodegeneration models: utilities and staining differences. Acta Histochem Cytochem 42:171–179

    PubMed  PubMed Central  Google Scholar 

  47. Zhang ZY, Sun BL, Liu JK, Yang MF, Li DW, Fang J, Zhang S, Yuan QL, Huang SL (2015) Activation of mGluR5 attenuates microglial activation and neuronal apoptosis in early brain injury after experimental subarachnoid hemorrhage in rats. Neurochem Res 40:1121–1132

    CAS  PubMed  Google Scholar 

  48. Abushik PA, Niittykoski M, Giniatullina R, Shakirzyanova A, Bart G, Fayuk D, Sibarov DA, Antonov SM, Giniatullin R (2014) The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. J Neurochem 129:264–274

    CAS  PubMed  Google Scholar 

  49. Overk CR, Cartier A, Shaked G, Rockenstein E, Ubhi K, Spencer B, Price DL, Patrick C, Desplats P, Masliah E (2014) Hippocampal neuronal cells that accumulate alpha-synuclein fragments are more vulnerable to Abeta oligomer toxicity via mGluR5-implications for dementia with Lewy bodies. Mol Neurodegener 9:18

    PubMed  PubMed Central  Google Scholar 

  50. Taylor RA, Sansing LH (2013) Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol 2013:746068

    PubMed  PubMed Central  Google Scholar 

  51. Wang J (2010) Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol 92:463–477

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wasserman JK, Zhu X, Schlichter LC (2007) Evolution of the inflammatory response in the brain following intracerebral hemorrhage and effects of delayed minocycline treatment. Brain Res 1180:140–154

    CAS  PubMed  Google Scholar 

  53. Mudo G, Trovato-Salinaro A, Caniglia G, Cheng Q, Condorelli DF (2007) Cellular localization of mGluR3 and mGluR5 mRNAs in normal and injured rat brain. Brain Res 1149:1–13

    CAS  PubMed  Google Scholar 

  54. Byrnes KR, Loane DJ, Stoica BA, Zhang J, Faden AI (2012) Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury. J Neuroinflamm 9:43

    CAS  Google Scholar 

  55. Xu X, Zhang J, Chen X, Liu J, Lu H, Yang P, Xiao X, Zhao L, Jiao Q, Zhao B, Zheng P, Liu Y (2012) The increased expression of metabotropic glutamate receptor 5 in subventricular zone neural progenitor cells and enhanced neurogenesis in a rat model of intracerebral hemorrhage. Neuroscience 202:474–483

    CAS  PubMed  Google Scholar 

  56. Zhao L, Jiao Q, Yang P, Chen X, Zhang J, Zhao B, Zheng P, Liu Y (2011) Metabotropic glutamate receptor 5 promotes proliferation of human neural stem/progenitor cells with activation of mitogen-activated protein kinases signaling pathway in vitro. Neuroscience 192:185–194

    CAS  PubMed  Google Scholar 

  57. Sokol DK, Maloney B, Long JM, Ray B, Lahiri DK (2011) Autism, Alzheimer disease, and fragile X: APP, FMRP, and mGluR5 are molecular links. Neurology 76:1344–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu Q, Zhang Y, Liu S, Liu Y, Yang X, Liu G, Shimizu T, Ikenaka K, Fan K, Ma J (2019) Cathepsin C promotes microglia M1 polarization and aggravates neuroinflammation via activation of Ca(2+)-dependent PKC/p38MAPK/NF-kappaB pathway. J Neuroinflamm 16:10

    Google Scholar 

  59. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43:3063–3070

    CAS  PubMed  Google Scholar 

  60. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen T, Zhang L, Qu Y, Huo K, Jiang X, Fei Z (2012) The selective mGluR5 agonist CHPG protects against traumatic brain injury in vitro and in vivo via ERK and Akt pathway. Int J Mol Med 29:630–636

    CAS  PubMed  Google Scholar 

  62. Wang JW, Wang HD, Cong ZX, Zhang XS, Zhou XM, Zhang DD (2013) Activation of metabotropic glutamate receptor 5 reduces the secondary brain injury after traumatic brain injury in rats. Biochem Biophys Res Commun 430:1016–1021

    CAS  PubMed  Google Scholar 

  63. Biber K, Laurie DJ, Berthele A, Sommer B, Tolle TR, Gebicke-Harter PJ, van Calker D, Boddeke HW (1999) Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J Neurochem 72:1671–1680

    CAS  PubMed  Google Scholar 

  64. Bruno V, Ksiazek I, Battaglia G, Lukic S, Leonhardt T, Sauer D, Gasparini F, Kuhn R, Nicoletti F, Flor PJ (2000) Selective blockade of metabotropic glutamate receptor subtype 5 is neuroprotective. Neuropharmacology 39:2223–2230

    CAS  PubMed  Google Scholar 

  65. Domin H, Kajta M, Smialowska M (2006) Neuroprotective effects of MTEP, a selective mGluR5 antagonists and neuropeptide Y on the kainate-induced toxicity in primary neuronal cultures. Pharmacol Rep 58:846–858

    CAS  PubMed  Google Scholar 

  66. Lea PMT, Movsesyan VA, Faden AI (2005) Neuroprotective activity of the mGluR5 antagonists MPEP and MTEP against acute excitotoxicity differs and does not reflect actions at mGluR5 receptors. Br J Pharmacol 145:527–534

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work supported by the Grant from the National Natural Science Foundation of China (Approval No. 81371348). We want to thank Junzhou Zhao, Shengfeng Ji, and Yingfei Liu for their excellent support during the experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinlin Chen or Yong Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.S., Yang, J., Luan, Y. et al. Attenuation of Acute Intracerebral Hemorrhage-Induced Microglial Activation and Neuronal Death Mediated by the Blockade of Metabotropic Glutamate Receptor 5 In Vivo. Neurochem Res 45, 1230–1243 (2020). https://doi.org/10.1007/s11064-020-03006-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03006-1

Keywords

Navigation