Skip to main content
Log in

Silencing of TXNIP Alleviated Oxidative Stress Injury by Regulating MAPK–Nrf2 Axis in Ischemic Stroke

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ischemic stroke is a life-threatening cerebrovascular thrombotic disease, oxidative stress is considered to be a critical factor to stroke pathophysiology. This study aimed to investigate the underlying molecular mechanism and propose the potential therapeutic strategy for ischemic stroke. Bioinformatics analysis based on a public microarray profile (GSE 61616) of ischemic stroke rats was performed as a pilot research. Oxidative stress was enriched as a significantly gene ontology item, and thioredoxin-interacting protein (TXNIP) and MAPK signaling were identified as the hub gene and pathway, respectively. The experiments in middle cerebral artery occlusion rats demonstrated that ischemia induced the activation of oxidative stress. The expressions of TXNIP, p-p38, p-JNK, p-ERK were significantly increased while Nrf2 and HO-1 expressions were decreased after stroke. Rescue assays were conducted in primary cultured neurons to explore the accurate interrelations among these factors. The results indicated that MAPK specific inhibitor and siRNA-TXNIP significantly alleviated the oxidative stress injury induced by oxygen–glucose deprivation. In addition, knocking down of TXNIP inhibited the activation of MAPK pathway and promoted Nrf2 pathway. Taken together, these findings indicated that TXNIP aggravated the oxidative stress injury by regulating MAPK–Nrf2 axis in ischemic stroke. Silencing of TXNIP seems a promising therapeutic strategy to alleviate ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Johnston SC, Easton JD, Farrant M, Barsan W, Conwit RA, Elm JJ et al (2018) Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA. N Engl J Med 379:215–225

    Article  CAS  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M et al (2016) Executive summary: heart disease and stroke statistics-2016 update. Circulation 133:447–454

    Article  Google Scholar 

  3. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflamm 16:142

    Article  Google Scholar 

  4. Radak D, Katsiki N, Resanovic I, Jovanovic A, Sudar-Milovanovic E (2017) Apoptosis and acute brain ischemia in ischemic stroke. Curr Vasc Pharmacol 15:115–122

    Article  CAS  Google Scholar 

  5. Manzanero S, Santro T, Arumugam TV (2013) Neuronal oxidative stress in acute ischemic stroke: sources and contribution to cell injury. Neurochem Int 62:712–718

    Article  CAS  Google Scholar 

  6. Li P, Stetler RA, Leak RK, Shi Y, Li Y, Yu W et al (2018) Oxidative stress and DNA damage after cerebral ischemia: potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology 134:208–217

    Article  CAS  Google Scholar 

  7. Cheng Y, Sheen J, Hu WL, Hung Y (2017) Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxidative Med Cell Longev 2017:1–16

    Article  Google Scholar 

  8. Liu T, Liu M, Shang P, Jin X, Liu W, Zhang Y et al (2018) Investigation into the underlying molecular mechanisms of hypertensive nephrosclerosis using bioinformatics analyses. Mol Med Rep 17:4440–4448

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jardillier R, Chatelain F, Guyon L (2018) Bioinformatics methods to select prognostic biomarker genes from large scale datasets: a review. Biotechnol J 13:e1800103

    Article  Google Scholar 

  10. Guo Y, Ma Y, Zhang Y, Zhou L, Huang S, Wen Y et al (2017) Autophagy-related gene microarray and bioinformatics analysis for ischemic stroke detection. Biochem Biophys Res Commun 489:48–55

    Article  CAS  Google Scholar 

  11. Wang L, Yu Y, Yang J, Zhao X, Li Z (2015) Dissecting Xuesaitong’s mechanisms on preventing stroke based on the microarray and connectivity map. Mol BioSyst 11:3033–3039

    Article  CAS  Google Scholar 

  12. Liu T, Zhang T, Zhou F, Wang J, Zhai X, Mu N et al (2017) Identification of genes and pathways potentially related to PHF20 by gene expression profile analysis of glioblastoma U87 cell line. Cancer Cell Int 17:87

    Article  Google Scholar 

  13. Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  Google Scholar 

  14. Smith M, Reddy U, Robba C, Sharma D, Citerio G (2019) Acute ischaemic stroke: challenges for the intensivist. Intensive Care Med 45:1177–1189

    Article  CAS  Google Scholar 

  15. Hayashi H, Yamada M, Kumai J, Takagi N, Nomizu M (2018) Biological activities of laminin-111-derived peptide-chitosan matrices in a primary culture of rat cortical neurons. Arch Biochem Biophys 648:53–59

    Article  CAS  Google Scholar 

  16. Yin W, Ma L, Zhang J, Huang K, Yang Q, Guo YY et al (2013) The migration of neural progenitor cell mediated by SDF-1 is NF-kappaB/HIF-1alpha dependent upon hypoxia. CNS Neurosci Ther 19:145–153

    Article  CAS  Google Scholar 

  17. Lorenzano S, Rost NS, Khan M, Li H, Lima FO, Maas MB et al (2018) Oxidative stress biomarkers of brain damage: hyperacute plasma F2-isoprostane predicts infarct growth in stroke. Stroke 49:630–637

    Article  CAS  Google Scholar 

  18. Shirley R, Ord ENJ, Work LM (2014) Oxidative stress and the use of antioxidants in stroke. Antioxidants 3:472–501

    Article  Google Scholar 

  19. Xuan Y, Bobak M, Anusruti A, Jansen EHJM, Pająk A, Tamosiunas A et al (2019) Association of serum markers of oxidative stress with myocardial infarction and stroke: pooled results from four large European cohort studies. Eur J Epidemiol 34:471–481

    Article  CAS  Google Scholar 

  20. Liu T, Liu M, Xu X, Liu W, Shang P, Zhai X et al (2017) Differential gene expression profiles between two subtypes of ischemic stroke with blood stasis syndromes. Oncotarget 8:111608–111622

    PubMed  PubMed Central  Google Scholar 

  21. Yang Q, Huang Q, Hu Z, Tang X (2019) Potential neuroprotective treatment of stroke: targeting excitotoxicity, oxidative stress, and inflammation. Front Neurosci 13:1036

    Article  Google Scholar 

  22. Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87:779–789

    Article  CAS  Google Scholar 

  23. Liu T, Liu M, Zhang T, Liu W, Xu H, Mu F et al (2018) Z-Guggulsterone attenuates astrocytes-mediated neuroinflammation after ischemia by inhibiting toll-like receptor 4 pathway. J Neurochem 147:803–815

    Article  CAS  Google Scholar 

  24. Tu W, Wang H, Li S, Liu Q, Sha H (2019) The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis 10:637–651

    Article  Google Scholar 

  25. Hu L, Chen W, Tian F, Yuan C, Wang H, Yue H (2018) Neuroprotective role of fucoxanthin against cerebral ischemic/reperfusion injury through activation of Nrf2/HO-1 signaling. Biomed Pharmacother 106:1484–1489

    Article  CAS  Google Scholar 

  26. Ahmad WA, Zeenat H, Ahmad BS, Din SNU, Musadiq B (2018) Relaxin protects cardiomyocytes against hypoxia-induced damage in in vitro conditions: involvement of Nrf2/HO-1 signaling pathway. Life Sci 213:25–31

    Article  Google Scholar 

  27. Zolnourian A, Galea I, Bulters D (2019) Neuroprotective role of the Nrf2 pathway in subarachnoid haemorrhage and its therapeutic potential. Oxidative Med Cell Longev 2019:1–21

    Article  Google Scholar 

  28. Kim HN, Park GH, Park SB, Kim JD, Eo HJ, Son H et al (2019) Sageretia thea inhibits inflammation through suppression of NF-κB and MAPK and activation of Nrf2/HO-1 signaling pathways in RAW264.7 cells. Am J Chin Med 47:385–403

    Article  CAS  Google Scholar 

  29. Rezatabar S, Karimian A, Rameshknia V, Parsian H, Majidinia M, Kopi TA et al (2019) RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J Cell Physiol 234:14951–14965

    Article  CAS  Google Scholar 

  30. Reustle A, Torzewski M (2018) Role of p38 MAPK in atherosclerosis and aortic valve sclerosis. Int J Mol Sci 19:3761

    Article  Google Scholar 

  31. Roy Choudhury G, Ryou M, Poteet E, Wen Y, He R, Sun F et al (2014) Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke. Brain Res 1551:45–58

    Article  CAS  Google Scholar 

  32. Roy Choudhury G, Ryou M, Poteet E, Wen Y, He R, Sun F et al (2016) The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke. J Mol Neurosci 59:90–98

    Article  Google Scholar 

  33. Nasoohi S, Ismael S, Ishrat T (2018) Thioredoxin-interacting protein (TXNIP) in cerebrovascular and neurodegenerative diseases: regulation and implication. Mol Neurobiol 55:7900–7920

    Article  CAS  Google Scholar 

  34. Joshi S, Wang W, Peck AB, Khan SR (2015) Activation of the NLRP3 inflammasome in association with calcium oxalate crystal induced reactive oxygen species in kidneys. J Urol 193:1684–1691

    Article  CAS  Google Scholar 

  35. Fang S, Jin Y, Zheng H, Yan J, Cui Y, Bi H et al (2011) High glucose condition upregulated Txnip expression level in rat mesangial cells through ROS/MEK/MAPK pathway. Mol Cell Biochem 347:175–182

    Article  CAS  Google Scholar 

  36. Hou Y, Wang Y, He Q, Li L, Xie H, Zhao Y et al (2018) Nrf2 inhibits NLRP3 inflammasome activation through regulating Trx1/TXNIP complex in cerebral ischemia reperfusion injury. Behav Brain Res 336:32–39

    Article  CAS  Google Scholar 

  37. Erdi F, Keskin F, Esen H, Kaya B, Feyzioglu B, Kilinc I et al (2016) Telmisartan ameliorates oxidative stress and subarachnoid haemorrhage-induced cerebral vasospasm. Neurol Res 38:224–231

    Article  CAS  Google Scholar 

  38. Kim GS, Jung JE, Narasimhan P, Sakata H, Chan PH (2012) Induction of thioredoxin-interacting protein is mediated by oxidative stress, calcium, and glucose after brain injury in mice. Neurobiol Dis 46:440–449

    Article  CAS  Google Scholar 

  39. Takagi Y, Mitsui A, Nishiyama A, Nozaki K, Sono H, Gon Y et al (1999) Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proc Natl Acad Sci USA 96:4131–4136

    Article  CAS  Google Scholar 

  40. Ishrat T, Mohamed IN, Pillai B, Soliman S, Fouda AY, Ergul A et al (2015) Thioredoxin-interacting protein: a novel target for neuroprotection in experimental thromboembolic stroke in mice. Mol Neurobiol 51:766–778

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Heilongjiang Postdoctoral Science Foundation, Grant No. LBH-Z18175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

The 2750 differentially expressed genes (CSV 285 kb)

Table S2

The 880 significant GO items (CSV 74 kb)

Table S3

The genes involved in the co-expression network (CSV 9 kb)

Table S4

The pathways involved in the pathway relation network (CSV 3 kb)

Figure S1

The MAP2 staining for neurons (TIFF 1564 kb)

Figure S2

The CBF (cerebral blood flow) in right cerebral hemisphere before and after stroke (TIFF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Su, Y., Ye, Q. et al. Silencing of TXNIP Alleviated Oxidative Stress Injury by Regulating MAPK–Nrf2 Axis in Ischemic Stroke. Neurochem Res 45, 428–436 (2020). https://doi.org/10.1007/s11064-019-02933-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02933-y

Keywords

Navigation