Skip to main content

Advertisement

Log in

Spinal Cord Injury: Animal Models, Imaging Tools and the Treatment Strategies

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) often leads to irreversible neuro-degenerative changes with life-long consequences. While there is still no effective therapy available, the results of past research have led to improved quality of life for patients suffering from partial or permanent paralysis. In this review we focus on the need, importance and the scientific value of experimental animal models simulating SCI in humans. Furthermore, we highlight modern imaging tools determining the location and extent of spinal cord damage and their contribution to early diagnosis and selection of appropriate treatment. Finally, we focus on available cellular and acellular therapies and novel combinatory approaches with exosomes and active biomaterials. Here we discuss the efficacy and limitations of adult mesenchymal stem cells which can be derived from bone marrow, adipose tissue or umbilical cord blood and its Wharton’s jelly. Special attention is paid to stem cell-derived exosomes and smart biomaterials due to their special properties as a delivery system for proteins, bioactive molecules or even genetic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ATMSCs:

Adipose tissue mesenchymal stem cells

ASIA score:

American Spinal Injury Association score

bFGF:

Basic fibroblast growth factor

BMSCs:

Bone marrow mesenchymal stem cells

CM:

Conditioned media

CNS:

Central nervous system

DESI imaging:

Desorption electrospray ionization imaging technique

DTI:

Diffusion tensor imaging

DW-MRI:

Diffusion-weighted magnetic resonance imaging

FDG:

Fluorodeoxyglucose

GDNF:

Glial cell derived neurotrophic factor

LC ACs:

Long-chain acylcarnitines

lyso PC:

Lysophosphatidylcholines

MALDI:

Matrix-assisted laser desorption/ionization

MEPs:

Motor-evoked potentials

MRI:

Magnetic resonance imaging

MSC:

Mesenchymal stem cells

NGF:

Nerve growth factor

NT-3:

Neurotrophin-3 protein

NT-4:

Neurotrophin-4 protein

PAN/PVC:

Polyacrylonitrile/polyvinylchloride

PGA:

Poly(glycolic acid)

PET:

Positron emission tomography

PHEMA:

Poly(2-hydroxyethyl methacrylate)

PLA:

Poly(lactic acid)

PLCL:

Poly(lactic-co-caprolactone)

PLGA:

Poly(lactic-co-glycolic acid)

PNS:

Peripheral nervous system

PTFE:

Poly(tetrafluoro-ethylene)

PVA:

Polyvinylalcohol

ROS:

Reactive oxygen species

SEPs:

Somato-sensory evoked potentials

SCI:

Spinal cord injury

TBI:

Traumatic brain injury

UC:

Umbilical cord

UCMSC:

Umbilical cord derived mesenchymal stem cells

WJ:

Wharton’s jelly

WJMSCs:

Wharton’s jelly derived mesenchymal stem cells

References

  1. Dalamagkas K, Tsintou M, Seifalian AM (2018) Stem cells for spinal cord injuries bearing translational potential. Neural Regen Res 13:35–42. https://doi.org/10.4103/1673-5374.224360

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ellingson BM, Kurpad SN, Schmit BD (2008) Ex vivo diffusion tensor imaging and quantitative tractography of the rat spinal cord during long-term recovery from moderate spinal contusion. J Magn Reson Imaging 28:1068–1079. https://doi.org/10.1002/jmri.21578

    Article  PubMed  Google Scholar 

  3. Akhtar AZ, Pippin JJ, Sandusky CB (2008) Animal models in spinal cord injury: a review. Rev Neurosci 19:47–60

    Article  PubMed  Google Scholar 

  4. Nakae A, Nakai K, Yano K et al (2011) The animal model of spinal cord injury as an experimental pain model. J Biomed Biotechnol 2011:939023. https://doi.org/10.1155/2011/939023

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wrathall JR, Pettegrew RK, Harvey F (1985) Spinal cord contusion in the rat: production of graded, reproducible, injury groups. Exp Neurol 88:108–122

    Article  CAS  PubMed  Google Scholar 

  6. Rivlin AS, Tator CH (1978) Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol 10:38–43

    CAS  PubMed  Google Scholar 

  7. Blight AR (1991) Morphometric analysis of a model of spinal cord injury in guinea pigs, with behavioral evidence of delayed secondary pathology. J Neurol Sci 103:156–171

    Article  CAS  PubMed  Google Scholar 

  8. Lukovic D, Moreno-Manzano V, Lopez-Mocholi E et al (2015) Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation. Sci Rep 5:9640. https://doi.org/10.1038/srep09640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharif-Alhoseini M, Khormali M, Rezaei M et al (2017) Animal models of spinal cord injury: a systematic review. Spinal Cord 55:714–721. https://doi.org/10.1038/sc.2016.187

    Article  CAS  PubMed  Google Scholar 

  10. Kjell J, Olson L (2016) Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 9:1125–1137. https://doi.org/10.1242/dmm.025833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cizkova D, Le Marrec-Croq F, Franck J et al (2014) Alterations of protein composition along the rostro-caudal axis after spinal cord injury: proteomic, in vitro and in vivo analyses. Front Cell Neurosci 8:105. https://doi.org/10.3389/fncel.2014.00105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Basso DM, Beattie MS, Bresnahan JC et al (1996) MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J Neurotrauma 13:343–359. https://doi.org/10.1089/neu.1996.13.343

    Article  CAS  PubMed  Google Scholar 

  13. Navarro R, Juhas S, Keshavarzi S et al (2012) Chronic spinal compression model in minipigs: a systematic behavioral, qualitative, and quantitative neuropathological study. J Neurotrauma 29:499–513. https://doi.org/10.1089/neu.2011.2076

    Article  PubMed  PubMed Central  Google Scholar 

  14. Noble LJ, Wrathall JR (1989) Correlative analyses of lesion development and functional status after graded spinal cord contusive injuries in the rat. Exp Neurol 103:34–40

    Article  CAS  PubMed  Google Scholar 

  15. Vanický I, Urdzíková L, Saganová K et al (2001) A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J Neurotrauma 18:1399–1407. https://doi.org/10.1089/08977150152725687

    Article  PubMed  Google Scholar 

  16. Jeffery ND, Smith PM, Lakatos A et al (2006) Clinical canine spinal cord injury provides an opportunity to examine the issues in translating laboratory techniques into practical therapy. Spinal Cord 44:584–593. https://doi.org/10.1038/sj.sc.3101912

    Article  CAS  PubMed  Google Scholar 

  17. Lim JH, Jung CS, Byeon YE et al (2007) Establishment of a canine spinal cord injury model induced by epidural balloon compression. J Vet Sci 8:89–94

    Article  PubMed  PubMed Central  Google Scholar 

  18. Foditsch EE, Miclaus G, Patras I et al (2018) A new technique for minimal invasive complete spinal cord injury in minipigs. Acta Neurochir (Wien) 160:459–465. https://doi.org/10.1007/s00701-017-3442-3

    Article  Google Scholar 

  19. Lee JHT, Jones CF, Okon EB et al (2013) A novel porcine model of traumatic thoracic spinal cord injury. J Neurotrauma 30:142–159. https://doi.org/10.1089/neu.2012.2386

    Article  PubMed  Google Scholar 

  20. Mills CD, Hains BC, Johnson KM, Hulsebosch CE (2001) Strain and model differences in behavioral outcomes after spinal cord injury in rat. J Neurotrauma 18:743–756. https://doi.org/10.1089/089771501316919111

    Article  CAS  PubMed  Google Scholar 

  21. Sedý J, Urdzíková L, Jendelová P, Syková E (2008) Methods for behavioral testing of spinal cord injured rats. Neurosci Biobehav Rev 32:550–580. https://doi.org/10.1016/j.neubiorev.2007.10.001

    Article  PubMed  Google Scholar 

  22. Chaovipoch P, Jelks KAB, Gerhold LM et al (2006) 17beta-estradiol is protective in spinal cord injury in post- and pre-menopausal rats. J Neurotrauma 23:830–852. https://doi.org/10.1089/neu.2006.23.830

    Article  PubMed  Google Scholar 

  23. Inamasu J, Nakamura Y, Ichikizaki K (2003) Induced hypothermia in experimental traumatic spinal cord injury: an update. J Neurol Sci 209:55–60

    Article  PubMed  Google Scholar 

  24. David BT, Steward O (2010) Deficits in bladder function following spinal cord injury vary depending on the level of the injury. Exp Neurol 226:128–135. https://doi.org/10.1016/j.expneurol.2010.08.014

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liebscher T, Schnell L, Schnell D et al (2005) Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann Neurol 58:706–719. https://doi.org/10.1002/ana.20627

    Article  CAS  PubMed  Google Scholar 

  26. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21. https://doi.org/10.1089/neu.1995.12.1

    Article  CAS  PubMed  Google Scholar 

  27. Tung A, Herrera S, Szafran MJ et al (2005) Effect of sleep deprivation on righting reflex in the rat is partially reversed by administration of adenosine A1 and A2 receptor antagonists. Anesthesiology 102:1158–1164

    Article  CAS  PubMed  Google Scholar 

  28. Ryken TC, Hadley MN, Walters BC et al (2013) Radiographic assessment. Neurosurgery 72(Suppl 2):54–72. https://doi.org/10.1227/NEU.0b013e318276edee

    Article  PubMed  Google Scholar 

  29. Janssen M, Nabih A, Moussa W et al (2011) Evaluation of diagnosis techniques used for spinal injury related back pain. Pain Res Treat. https://doi.org/10.1155/2011/478798doi: .

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gupta V (2013) Positron emission tomography in spinal cord disease. Mayo Clin Proc 88:1188–1190. https://doi.org/10.1016/j.mayocp.2013.09.004

    Article  PubMed  Google Scholar 

  31. Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539. https://doi.org/10.1016/j.neuron.2006.08.012

    Article  CAS  PubMed  Google Scholar 

  32. Parizel PM, van der Zijden T, Gaudino S et al (2010) Trauma of the spine and spinal cord: imaging strategies. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 19(Suppl 1):S8–S17. https://doi.org/10.1007/s00586-009-1123-5

    Article  Google Scholar 

  33. Vargas MI, Gariani J, Delattre BA et al (2015) Three-dimensional MR imaging of the brachial plexus. Semin Musculoskelet Radiol 19:137–148. https://doi.org/10.1055/s-0035-1546300

    Article  PubMed  Google Scholar 

  34. Quanico J, Hauberg-Lotte L, Devaux S et al (2018) 3D MALDI mass spectrometry imaging reveals specific localization of long-chain acylcarnitines within a 10-day time window of spinal cord injury. Sci Rep 8:16083. https://doi.org/10.1038/s41598-018-34518-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Adams SH, Hoppel CL, Lok KH et al (2009) Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid β-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J Nutr 139:1073–1081. https://doi.org/10.3945/jn.108.103754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rutkowsky JM, Knotts TA, Ono-Moore KD et al (2014) Acylcarnitines activate proinflammatory signaling pathways. Am J Physiol Endocrinol Metab 306:E1378–E1387. https://doi.org/10.1152/ajpendo.00656.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Viader A, Sasaki Y, Kim S et al (2013) Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron 77:886–898. https://doi.org/10.1016/j.neuron.2013.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Devaux S, Cizkova D, Quanico J et al (2016) Proteomic analysis of the spatio-temporal based molecular kinetics of acute spinal cord injury identifies a time- and segment-specific window for effective tissue repair. Mol Cell Proteomics 15:2641–2670. https://doi.org/10.1074/mcp.M115.057794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roux A, Muller L, Jackson SN et al (2016) Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury. J Neurosci Methods 272:19–32. https://doi.org/10.1016/j.jneumeth.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Girod M, Shi Y, Cheng J-X, Cooks RG (2011) Mapping lipid alterations in traumatically injured rat spinal cord by desorption electrospray ionization imaging mass spectrometry. Anal Chem 83:207–215. https://doi.org/10.1021/ac102264z

    Article  CAS  PubMed  Google Scholar 

  41. Ahuja CS, Wilson JR, Nori S et al (2017) Traumatic spinal cord injury. Nat Rev Dis Primer 3:17018. https://doi.org/10.1038/nrdp.2017.18

    Article  Google Scholar 

  42. Fawcett JW (2009) Recovery from spinal cord injury: regeneration, plasticity and rehabilitation. Brain 132:1417–1418. https://doi.org/10.1093/brain/awp121

    Article  PubMed  Google Scholar 

  43. Kubinová Š, Syková E (2009) Nanotechnology for treatment of stroke and spinal cord injury. Nanomedicine 5:99–108. https://doi.org/10.2217/nnm.09.93

    Article  Google Scholar 

  44. Angeli CA, Boakye M, Morton RA et al (2018) Recovery of over-ground walking after chronic motor complete spinal cord injury. N Engl J Med 379:1244–1250. https://doi.org/10.1056/NEJMoa1803588

    Article  PubMed  Google Scholar 

  45. Gill ML, Grahn PJ, Calvert JS et al (2018) Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med 24:1677. https://doi.org/10.1038/s41591-018-0175-7

    Article  CAS  PubMed  Google Scholar 

  46. Musselman KE, Shah M, Zariffa J (2018) Rehabilitation technologies and interventions for individuals with spinal cord injury: translational potential of current trends. J Neuroeng Rehabil 15:40. https://doi.org/10.1186/s12984-018-0386-7

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sykova E, Forostyak S (2013) Stem cells in regenerative medicine. Laser Ther 22:87–92. https://doi.org/10.5978/islsm.13-RE-01

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kubinová Š, Syková E (2012) Biomaterials combined with cell therapy for treatment of spinal cord injury. Regen Med 7:207–224. https://doi.org/10.2217/rme.11.121

    Article  CAS  PubMed  Google Scholar 

  49. Grulova I, Slovinska L, Blaško J et al (2015) Delivery of alginate scaffold releasing two trophic factors for spinal cord injury repair. Sci Rep. https://doi.org/10.1038/srep13702

    Article  PubMed  PubMed Central  Google Scholar 

  50. Syková E, Homola A, Mazanec R et al (2006) Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 15:675–687

    Article  PubMed  Google Scholar 

  51. Syková E, Jendelová P, Urdzíková L et al (2006) Bone marrow stem cells and polymer hydrogels—two strategies for spinal cord injury repair. Cell Mol Neurobiol 26:1113–1129. https://doi.org/10.1007/s10571-006-9007-2

    Article  CAS  PubMed  Google Scholar 

  52. Nandoe Tewarie RDS, Nandoe RDS, Hurtado A et al (2006) Bone marrow stromal cells for repair of the spinal cord: towards clinical application. Cell Transplant 15:563–577

    Article  PubMed  Google Scholar 

  53. Cizkova D, Novotna I, Slovinska L et al (2011) Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. J Neurotrauma 28:1951–1961. https://doi.org/10.1089/neu.2010.1413

    Article  PubMed  Google Scholar 

  54. Cízková D, Rosocha J, Vanický I et al (2006) Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol 26:1167–1180. https://doi.org/10.1007/s10571-006-9093-1

    Article  PubMed  Google Scholar 

  55. Osaka M, Honmou O, Murakami T et al (2010) Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Brain Res 1343:226–235. https://doi.org/10.1016/j.brainres.2010.05.011

    Article  CAS  PubMed  Google Scholar 

  56. Forostyak S, Sykova E (2017) Neuroprotective potential of cell-based therapies in ALS: from bench to bedside. Front Neurosci. https://doi.org/10.3389/fnins.2017.00591

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vishnubalaji R, Al-Nbaheen M, Kadalmani B et al (2012) Comparative investigation of the differentiation capability of bone-marrow- and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell Tissue Res 347:419–427. https://doi.org/10.1007/s00441-011-1306-3

    Article  PubMed  Google Scholar 

  58. Danisovic L, Varga I, Polák S et al (2009) Comparison of in vitro chondrogenic potential of human mesenchymal stem cells derived from bone marrow and adipose tissue. Gen Physiol Biophys 28:56–62

    Article  CAS  PubMed  Google Scholar 

  59. Elman JS, Li M, Wang F et al (2014) A comparison of adipose and bone marrow-derived mesenchymal stromal cell secreted factors in the treatment of systemic inflammation. J Inflamm Lond Engl 11:1. https://doi.org/10.1186/1476-9255-11-1

    Article  CAS  Google Scholar 

  60. Ahmadian Kia N, Bahrami AR, Ebrahimi M et al (2011) Comparative analysis of chemokine receptor’s expression in mesenchymal stem cells derived from human bone marrow and adipose tissue. J Mol Neurosci MN 44:178–185. https://doi.org/10.1007/s12031-010-9446-6

    Article  CAS  PubMed  Google Scholar 

  61. Hsiao ST-F, Asgari A, Lokmic Z et al (2012) Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev 21:2189–2203. https://doi.org/10.1089/scd.2011.0674

    Article  CAS  PubMed  Google Scholar 

  62. Huang JI, Kazmi N, Durbhakula MM et al (2005) Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res Off Publ Orthop Res Soc 23:1383–1389. https://doi.org/10.1016/j.orthres.2005.03.008.1100230621

    Article  CAS  Google Scholar 

  63. Balasubramanian S, Thej C, Venugopal P et al (2013) Higher propensity of Wharton’s jelly derived mesenchymal stromal cells towards neuronal lineage in comparison to those derived from adipose and bone marrow. Cell Biol Int 37:507–515. https://doi.org/10.1002/cbin.10056

    Article  CAS  PubMed  Google Scholar 

  64. Kim D-W, Staples M, Shinozuka K et al (2013) Wharton’s jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci 14:11692–11712. https://doi.org/10.3390/ijms140611692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou C, Yang B, Tian Y et al (2011) Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes. Cell Immunol 272:33–38. https://doi.org/10.1016/j.cellimm.2011.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Krupa P, Vackova I, Ruzicka J et al (2018) The effect of human mesenchymal stem cells derived from Wharton’s jelly in spinal cord injury treatment is dose-dependent and can be facilitated by repeated application. Int J Mol Sci 19:1503. https://doi.org/10.3390/ijms19051503

    Article  CAS  PubMed Central  Google Scholar 

  67. Riordan NH, Morales I, Fernández G et al (2018) Clinical feasibility of umbilical cord tissue-derived mesenchymal stem cells in the treatment of multiple sclerosis. J Transl Med 16:57. https://doi.org/10.1186/s12967-018-1433-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cantinieaux D, Quertainmont R, Blacher S et al (2013) Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS ONE 8:e69515. https://doi.org/10.1371/journal.pone.0069515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kanekiyo K, Wakabayashi T, Nakano N et al (2018) Effects of intrathecal injection of the conditioned medium from bone marrow stromal cells on spinal cord injury in rats. J Neurotrauma 35:521–532. https://doi.org/10.1089/neu.2017.5201

    Article  PubMed  Google Scholar 

  70. Cizkova D, Cubinkova V, Smolek T et al (2018) Localized intrathecal delivery of mesenchymal stromal cells conditioned medium improves functional recovery in a rat model of spinal cord injury. Int J Mol Sci. https://doi.org/10.3390/ijms19030870

    Article  PubMed  PubMed Central  Google Scholar 

  71. Asadi-Golshan R, Razban V, Mirzaei E et al (2018) Sensory and motor behavior evidences supporting the usefulness of conditioned medium from dental pulp-derived stem cells in spinal cord injury in rats. Asian Spine J 12:785–793. https://doi.org/10.31616/asj.2018.12.5.785

    Article  PubMed  PubMed Central  Google Scholar 

  72. Théry C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579. https://doi.org/10.1038/nri855

    Article  CAS  PubMed  Google Scholar 

  73. Murgoci A-N, Cizkova D, Majerova P et al (2018) Brain-cortex microglia-derived exosomes: nanoparticles for glioma therapy. Chemphyschem Eur J Chem Phys Phys Chem 19:1205–1214. https://doi.org/10.1002/cphc.201701198

    Article  CAS  Google Scholar 

  74. Lankford KL, Arroyo EJ, Nazimek K et al (2018) Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS ONE 13:e0190358. https://doi.org/10.1371/journal.pone.0190358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li D, Zhang P, Yao X et al (2018) Exosomes derived from miR-133b-modified mesenchymal stem cells promote recovery after spinal cord injury. Front Neurosci.https://doi.org/10.3389/fnins.2018.00845

    Article  PubMed  PubMed Central  Google Scholar 

  76. Xu G, Ao R, Zhi Z et al (2018) miR-21 and miR-19b delivered by hMSC-derived EVs regulate the apoptosis and differentiation of neurons in patients with spinal cord injury. J Cell Physiol. https://doi.org/10.1002/jcp.27690

    Article  PubMed  PubMed Central  Google Scholar 

  77. Straley KS, Foo CWP, Heilshorn SC (2010) Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma 27:1–19. https://doi.org/10.1089/neu.2009.0948

    Article  PubMed  PubMed Central  Google Scholar 

  78. DeBrot A, Yao L (2018) The combination of induced pluripotent stem cells and bioscaffolds holds promise for spinal cord regeneration. Neural Regen Res 13:1677–1684. https://doi.org/10.4103/1673-5374.238602

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tsintou M, Dalamagkas K, Seifalian AM (2015) Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regen Res 10:726–742. https://doi.org/10.4103/1673-5374.156966

    Article  PubMed  PubMed Central  Google Scholar 

  80. Macaya D, Spector M (2012) Injectable hydrogel materials for spinal cord regeneration: a review. Biomed Mater Bristol Engl 7:012001. https://doi.org/10.1088/1748-6041/7/1/012001

    Article  CAS  Google Scholar 

  81. Belkas JS, Munro CA, Shoichet MS et al (2005) Long-term in vivo biomechanical properties and biocompatibility of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) nerve conduits. Biomaterials 26:1741–1749. https://doi.org/10.1016/j.biomaterials.2004.05.031

    Article  CAS  PubMed  Google Scholar 

  82. Cizkova D, Slovinska L, Grulova I et al (2015) The influence of sustained dual-factor presentation on the expansion and differentiation of neural progenitors in affinity-binding alginate scaffolds. J Tissue Eng Regen Med 9:918–929. https://doi.org/10.1002/term.1797

    Article  CAS  PubMed  Google Scholar 

  83. Trafton PG, Boyd CA (1984) Computed tomography of thoracic and lumbar spine injuries. J Trauma 24:506–515

    Article  CAS  PubMed  Google Scholar 

  84. Atesok K, Tanaka N, O’Brien A et al (2018) Posttraumatic spinal cord injury without radiographic abnormality. Adv Orthop 2018:7060654. https://doi.org/10.1155/2018/7060654

    Article  PubMed  PubMed Central  Google Scholar 

  85. Guarnieri G, Izzo R, Muto M (2016) The role of emergency radiology in spinal trauma. Br J Radiol 89:20150833. https://doi.org/10.1259/bjr.20150833

    Article  PubMed  PubMed Central  Google Scholar 

  86. Szwedowski D, Walecki J (2014) Spinal Cord Injury without Radiographic Abnormality (SCIWORA)—clinical and radiological aspects. Pol J Radiol 79:461–464. https://doi.org/10.12659/PJR.890944

    Article  PubMed  PubMed Central  Google Scholar 

  87. Freund P, Curt A, Friston K, Thompson A (2013) Tracking changes following spinal cord injury: insights from neuroimaging. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 19:116–128. https://doi.org/10.1177/1073858412449192

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by: APVV 15-0613 (Dasa Cizkova), ERANET-AxonRepair (Dasa Cizkova), VEGA 2/0146/19, VEGA 1/0571/17, Grants from Ministère de L’Education Nationale, L’Enseignement Supérieur et de la Recherche, INSERM (Michel Salzet), SIRIC ONCOLille Grant INCD a-DGOS-Inserm 6041aa (Isabelle Fournier), IGA UVLF 06/2018 “Influence of Regeneration Capacity of Nervous Tissue in vitro through Adult Stem Cells products”.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Dasa Cizkova.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In Honor of Prof. Eva Sykova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cizkova, D., Murgoci, AN., Cubinkova, V. et al. Spinal Cord Injury: Animal Models, Imaging Tools and the Treatment Strategies. Neurochem Res 45, 134–143 (2020). https://doi.org/10.1007/s11064-019-02800-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02800-w

Keywords

Navigation