Skip to main content

Advertisement

Log in

Transplants of Human Mesenchymal Stem Cells Improve Functional Recovery After Spinal Cord Injury in the Rat

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

 

Human mesenchymal stem cells (hMSCs) derived from adult bone marrow represent a potentially useful source of cells for cell replacement therapy after nervous tissue damage. They can be expanded in culture and reintroduced into patients as autografts or allografts with unique immunologic properties. The aim of the present study was to investigate (i) survival, migration, differentiation properties of hMSCs transplanted into non-immunosuppressed rats after spinal cord injury (SCI) and (ii) impact of hMSC transplantation on functional recovery. Seven days after SCI, rats received i.v. injection of hMSCs (2×106 in 0.5 mL DMEM) isolated from adult healthy donors. Functional recovery was assessed by Basso–Beattie–Bresnahan (BBB) score weekly for 28 days. Our results showed gradual improvement of locomotor function in transplanted rats with statistically significant differences at 21 and 28 days. Immunocytochemical analysis using human nuclei (NUMA) and BrdU antibodies confirmed survival and migration of hMSCs into the injury site. Transplanted cells were found to infiltrate mainly into the ventrolateral white matter tracts, spreading also to adjacent segments located rostro-caudaly to the injury epicenter. In double-stained preparations, hMSCs were found to differentiate into oligodendrocytes (APC), but not into cells expressing neuronal markers (NeuN). Accumulation of GAP-43 regrowing axons within damaged white matter tracts after transplantation was observed. Our findings indicate that hMSCs may facilitate recovery from spinal cord injury by remyelinating spared white matter tracts and/or by enhancing axonal growth. In addition, low immunogenicity of hMSCs was confirmed by survival of donor cells without immunosuppressive treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  • Aggarwal, S., and Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822.

    Article  CAS  PubMed  Google Scholar 

  • Akiyama, Y., Radtke, C., Honmou, O., and Kocsis, J. D. (2002). Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39:229–236.

    Article  PubMed  Google Scholar 

  • Ankeny, D. P., McTigue, D. M., and Jakeman, L. B. (2004). Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp. Neurol. 190:17–31.

    Article  PubMed  Google Scholar 

  • Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., Kiedrowski, M., Rovner, A., Ellis, S. G., Thomas, J. D., DiCorleto, P. E., Topol, E. J., and Penn, M. S. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703.

    Article  CAS  PubMed  Google Scholar 

  • Cizkova, D., Racekova, E., and Vanicky, I. (1997). The expression of B-50/GAP-43 and GFAP after bilateral olfactory bulbectomy in rats. Physiol. Res. 46:487–495.

    CAS  PubMed  Google Scholar 

  • Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., Grisanti, S., and Gianni, A. M. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843.

    Article  PubMed  Google Scholar 

  • Gussoni, E., Soneoka, Y., Strickland, C. D., Buzney, E. A., Khan, M. K., Flint, A. F., Kunkel, L. M., and Mulligan, R. C. (1999). Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394.

    CAS  PubMed  Google Scholar 

  • Hamano, K., Li, T. S., Kobayashi, T., Kobayashi, S., Matsuzaki, M., and Esato, K. (2000). Angiogenesis induced by the implantation of self-bone marrow cells: A new material for therapeutic angiogenesis. Cell Transplant. 9:439–443.

    CAS  PubMed  Google Scholar 

  • Hofstetter, C. P., Schwarz, E. J., Hess, D., Widenfalk, J., El Manira, A., Prockop, D. J., and Olson, L. (2002). Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl. Acad. Sci. U.S.A. 99:2199–2204.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Zhang, Z. G., Li, Y., Wang, L., Xu, Y. X., Gautam, S. C., Lu, M., Zhu, Z., and Chopp, M. (2003). Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ. Res. 92:692–699.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Li, Y., Wang, L., Katakowski, M., Zhang, L., Chen, J., Xu, Y., Gautam, S. C., and Chopp, M. (2002). Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 22:275–279.

    Article  PubMed  Google Scholar 

  • Chopp, M., and Li, Y. (2002). Treatment of neural injury with marrow stromal cells. Lancet Neurol. 1:92–100.

    Article  PubMed  Google Scholar 

  • Chopp, M., Zhang, X. H., Li, Y., Wang, L., Chen, J., Lu, D., Lu, M., and Rosenblum, M. (2000). Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport 11:3001–3005.

    CAS  PubMed  Google Scholar 

  • Irons, H., Lind, J. G., Wakade, C. G., Yu, G., Hadman, M., Carroll, J., Hess, D. C., and Borlongan, C. V. (2004). Intracerebral xenotransplantation of GFP mouse bone marrow stromal cells in intact and stroke rat brain: Graft survival and immunologic response. Cell Transplant. 13:283–294.

    CAS  PubMed  Google Scholar 

  • Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J., Majesky, M. W., Entman, M. L., Michael, L. H., Hirschi, K. K., and Goodell, M. A. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107:1395–1402.

    Article  CAS  PubMed  Google Scholar 

  • Jendelova, P., Herynek, V., Urdzikova, L., Glogarova, K., Kroupova, J., Andersson, B., Bryja, V., Burian, M., Hajek, M., and Sykova, E. (2004). Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J. Neurosci. Res. 76:232–243.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W. C., Largaespada, D. A., and Verfaillie, C. M. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49.

    Article  CAS  PubMed  Google Scholar 

  • Kim, B. J., Seo, J. H., Bubien, J. K., and Oh, Y. S. (2002). Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro. Neuroreport 13:1185–1188.

    Article  PubMed  Google Scholar 

  • Kim, S., Yoon, Y. S., Kim, J. W., Jung, M., Kim, S. U., Lee, Y. D., and Suh-Kim, H. (2004). Neurogenin1 is sufficient to induce neuronal differentiation of embryonal carcinoma P19 cells in the absence of retinoic acid. Cell Mol Neurobiol. 24:343–356.

    Article  CAS  PubMed  Google Scholar 

  • Krause, D. S., Theise, N. D., Collector, M. I., Henegariu, O., Hwang, S., Gardner, R., Neutzel, S., and Sharkis, S. J. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377.

    Article  CAS  PubMed  Google Scholar 

  • Le Blanc, K., and Ringden, O. (2005). Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 11:321–334.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Chen, J., Chen, X. G., Wang, L., Gautam, S. C., Xu, Y. X., Katakowski, M., Zhang, L. J., Lu, M., Janakiraman, N., and Chopp, M. (2002). Human marrow stromal cell therapy for stroke in rat: Neurotrophins and functional recovery. Neurology 59:514–523.

    CAS  PubMed  Google Scholar 

  • Liechty, K. W., MacKenzie, T. C., Shaaban, A. F., Radu, A., Moseley, A. M., Deans, R., Marshak, D. R., and Flake, A. W. (2000). Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat. Med. 6:1282–1286.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S. Q., Ma, Y. G., Peng, H., and Fan, L. (2005). Monocyte chemoattractant protein-1 level in serum of patients with acute spinal cord injury. Chin. J. Traumatol. 8:216–219.

    CAS  PubMed  Google Scholar 

  • Mansilla, E., Marin, G. H., Sturla, F., Drago, H. E., Gil, M. A., Salas, E., Gardiner, M. C., Piccinelli, G., Bossi, S., Petrelli, L., Iorio, G., Ramos, C. A., and Soratti, C. (2005). Human mesenchymal stem cells are tolerized by mice and improve skin and spinal cord injuries. Transplant. Proc. 37:292– 294.

    Article  CAS  PubMed  Google Scholar 

  • Mechirova, E., and Domorakova, I. (2002). NADPH-diaphorase activity in the spinal cord after ischemic injury and the effects of pretreatment with Ginkgo biloba extract (EGb 761). Acta Histochem. 104:427–430.

    Article  PubMed  Google Scholar 

  • Mezey, E., Key, S., Vogelsang, G., Szalayova, I., Lange, G. D., and Crain, B. (2003). Transplanted bone marrow generates new neurons in human brains. Proc. Natl. Acad. Sci. U.S.A. 100:1364–1369.

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Elias, G., Marcus, A. J., Coyne, T. M., Woodbury, D., and Black, I. B. (2004). Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J. Neurosci. 24:4585–4595.

    Article  CAS  PubMed  Google Scholar 

  • Neuhuber, B., Timothy Himes, B., Shumsky, J. S., Gallo, G., and Fischer, I. (2005). Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res. 1035:73–85.

    Article  CAS  PubMed  Google Scholar 

  • Orlic, D. (2003). Adult bone marrow stem cells regenerate myocardium in ischemic heart disease. Ann. N. Y. Acad. Sci. 996:152–157.

    Article  PubMed  Google Scholar 

  • Perrin, F. E., Lacroix, S., Aviles-Trigueros, M., and David, S. (2005). Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha and interleukin-1beta in Wallerian degeneration. Brain 128:854–866.

    Article  PubMed  Google Scholar 

  • Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147.

    Article  CAS  PubMed  Google Scholar 

  • Racekova, E., Fercakova, A., and Orendacova, J. (2000). Neural stem cells: Possibilities of regeneration in the adult CNS. Bratisl. Lek. Listy. 101:450–454.

    CAS  PubMed  Google Scholar 

  • Racekova, E., Orendacova, J., Martoncikova, M., and Vanicky, I. (2003). NADPH-diaphorase positivity in the rostral migratory stream of the developing rat. Brain Res. Dev. Brain Res. 146:131–134.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., Freeman, T. B., Saporta, S., Janssen, W., Patel, N., Cooper, D. R., and Sanberg, P. R. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 164:247–256.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, R. E., Reyes, M., Koodie, L., Jiang, Y., Blackstad, M., Lund, T., Lenvik, T., Johnson, S., Hu, W. S., and Verfaillie, C. M. (2002). Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest. 109:1291–1302.

    Article  CAS  PubMed  Google Scholar 

  • Shake, J. G., Gruber, P. J., Baumgartner, W. A., Senechal, G., Meyers, J., Redmond, J. M., Pittenger, M. F., and Martin, B. J. (2002). Mesenchymal stem cell implantation in a swine myocardial infarct model: Engraftment and functional effects. Ann. Thorac. Surg. 73:1919–1926.

    Article  PubMed  Google Scholar 

  • Song, S., Kamath, S., Mosquera, D., Zigova, T., Sanberg, P., Vesely, D. L., and Sanchez-Ramos, J. (2004). Expression of brain natriuretic peptide by human bone marrow stromal cells. Exp. Neurol. 185:191–197.

    Article  CAS  PubMed  Google Scholar 

  • Tse, W. T., Pendleton, J. D., Beyer, W. M., Egalka, M. C., and Guinan, E. C. (2003). Suppression of allogeneic T-cell proliferation by human marrow stromal cells: Implications in transplantation. Transplantation 75:389–397.

    Article  CAS  PubMed  Google Scholar 

  • Vanicky, I., Urdzikova, L., Saganova, K., Cizkova, D., and Galik, J. (2001). A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J. Neurotrauma 18:1399–1407.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Li, Y., Chen, X., Chen, J., Gautam, S. C., Xu, Y., and Chopp, M. (2002). MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 7:113–117.

    Article  CAS  PubMed  Google Scholar 

  • Willing, A. E., Vendrame, M., Mallery, J., Cassady, C. J., Davis, C. D., Sanchez-Ramos, J., and Sanberg, P. R. (2003). Mobilized peripheral blood cells administered intravenously produce functional recovery in stroke. Cell Transplant. 12:449–454.

    PubMed  Google Scholar 

  • Wu, S., Suzuki, Y., Ejiri, Y., Noda, T., Bai, H., Kitada, M., Kataoka, K., Ohta, M., Chou, H., and Ide, C. (2003). Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. J. Neurosci. Res. 72:343–351.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Donaldson, A. E., Jiang, Y., and Iacovitti, L. (2003). Factors influencing the differentiation of dopaminergic traits in transplanted neural stem cells. Cell. Mol. Neurobiol. 23:851–864.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, C., Qin, Z., Zhong, C. J., Wang, Y., and Shen, X. Y. (2003). Neuroprotective effects of bone marrow stromal cells on rat organotypic hippocampal slice culture model of cerebral ischemia. Neurosci. Lett. 342:93–96.

    Article  CAS  PubMed  Google Scholar 

  • Zurita, M., and Vaquero, J. (2004). Functional recovery in chronic paraplegia after bone marrow stromal cells transplantation. Neuroreport 15:1105–1108.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by APVV 51-002105, VEGA 2/5136/25, STAA 51-011-604. We express our thanks to Marika Špontáková for her great assistance in the immunocytochemical analysis as well as to Monika Ragáliová and Ivana Kupsáková for their helpful advice in cell culture preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daša Čížková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čížková, D., Rosocha, J., Vanický, I. et al. Transplants of Human Mesenchymal Stem Cells Improve Functional Recovery After Spinal Cord Injury in the Rat. Cell Mol Neurobiol 26, 1165–1178 (2006). https://doi.org/10.1007/s10571-006-9093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9093-1

KEY WORDS

Navigation