Skip to main content
Log in

Bone Marrow Stem Cells and Polymer Hydrogels—Two Strategies for Spinal Cord Injury Repair

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. Emerging clinical studies of treating brain and spinal cord injury (SCI) led us to examine the effect of autologous adult stem cell transplantation as well as the use of polymer scaffolds in spinal cord regeneration. We compared an intravenous injection of mesenchymal stem cells (MSCs) or the injection of a freshly prepared mononuclear fraction of bone marrow cells (BMCs) on the treatment of an acute or chronic balloon-induced spinal cord compression lesion in rats. Based on our experimental studies, autologous BMC implantation has been used in a Phase I/II clinical trial in patients (n=20) with a transversal spinal cord lesion.

2. MSCs were isolated from rat bone marrow by their adherence to plastic, labeled with iron-oxide nanoparticles and expanded in vitro. Macroporous hydrogels based on derivatives of 2-hydroxyethyl methacrylate (HEMA) or 2-hydroxypropyl methacrylamide (HPMA) were prepared, then modified by their copolymerization with a hydrolytically degradable crosslinker, N,O-dimethacryloylhydroxylamine, or by different surface electric charges. Hydrogels or hydrogels seeded with MSCs were implanted into rats with hemisected spinal cords.

3. Lesioned animals grafted with MSCs or BMCs had smaller lesions 35 days postgrafting and higher scores in BBB testing than did control animals and also showed a faster recovery of sensitivity in their hind limbs using the plantar test. The functional improvement was more pronounced in MSC-treated rats. In MR images, the lesion populated by grafted cells appeared as a dark hypointense area and was considerably smaller than in control animals. Morphometric measurements showed an increase in the volume of spared white matter in cell-treated animals. In the clinical trial, we compared intraarterial (via a. vertebralis, n=6) versus intravenous administration of BMCs (n=14) in a group of subacute (10–33 days post-SCI, n=8) and chronic patients (2–18 months, n=12). For patient follow-up we used MEP, SEP, MRI, and the ASIA score. Our clinical study revealed that the implantation of BMCs into patients is safe, as there were no complications following cell administration. Partial improvement in the ASIA score and partial recovery of MEP or SEP have been observed in all subacute patients who received cells via a. vertebralis (n=4) and in one out of four subacute patients who received cells intravenously. Improvement was also found in one chronic patient who received cells via a. vertebralis. A much larger population of patients is needed before any conclusions can be drawn. The implantation of hydrogels into hemisected rat spinal cords showed that cellular ingrowth was most pronounced in copolymers of HEMA with a positive surface electric charge. Although most of the cells had the morphological properties of connective tissue elements, we found NF-160-positive axons invading all the implanted hydrogels from both the proximal and distal stumps. The biodegradable hydrogels degraded from the border that was in direct contact with the spinal cord tissue. They were resorbed by macrophages and replaced by newly formed tissue containing connective tissue elements, blood vessels, GFAP-positive astrocytic processes, and NF-160-positive neurofilaments. Additionally, we implanted hydrogels seeded with nanoparticle-labeled MSCs into hemisected rat spinal cords. Hydrogels seeded with MSCs were visible on MR images as hypointense areas, and subsequent Prussian blue histological staining confirmed positively stained cells within the hydrogels.

4. We conclude that treatment with different bone marrow cell populations had a positive effect on behavioral outcome and histopathological assessment after SCI in rats; this positive effect was most pronounced following MSC treatment. Our clinical study suggests a possible positive effect in patients with SCI. Bridging the lesion cavity can be an approach for further improving regeneration. Our preclinical studies showed that macroporous polymer hydrogels based on derivatives of HEMA or HPMA are suitable materials for bridging cavities after SCI; their chemical and physical properties can be modified to a specific use, and 3D implants seeded with different cell types may facilitate the ingrowth of axons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  • Akiyama, Y., Radtke, C., Honmou, O., and Kocsis, J. D. (2002b). Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39:229–236.

    Article  PubMed  Google Scholar 

  • Akiyama, Y., Radtke, C., and Kocsis, J. D. (2002a). Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J. Neurosci. 22:6623–6630.

    CAS  PubMed  Google Scholar 

  • Azizi, S. A., Stokes, D., Augelli, B. J., DiGirolamo, C., and Prockop, D. J. (1998). Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats–similarities to astrocyte grafts. Proc. Natl. Acad. Sci. U.S.A. 95:3908–3913.

    Article  CAS  PubMed  Google Scholar 

  • Basso, D. M., Beattie, M. S., Bresnahan, J. C., Anderson, D. K., Faden, A. I., Gruner, J. A., et al. (1996). MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J. Neurotrauma 13:343–359.

    CAS  PubMed  Google Scholar 

  • Bixby, J. L., and Harris, W. A. (1991). Molecular mechanisms of axon growth and guidance. Annu. Rev. Cell. Biol. 7:117–159.

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund, A., and Lindvall (2000). Cell replacement therapies for central nervous system disorders. Nat. Neurosci. 3:537–544.

    Article  CAS  PubMed  Google Scholar 

  • Bracken, M. B., Shepard, M. J., Collins, W. F., Holford, T. R., Young, W., Baskin, D. S., et al. (1990). A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N. Engl. J. Med. 322:1405–1411.

    Article  CAS  PubMed  Google Scholar 

  • Bracken, M. B., Shepard, M. J., Holford, T. R., Leo-Summers, L., Aldrich, E. F., Fazl, M., et al. (1998). Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the third National Acute Spinal Cord Injury randomized controlled trial. J. Neurosurg. 89:699–706.

    Article  CAS  PubMed  Google Scholar 

  • Brazelton, T. R., Rossi, F. M., Keshet, G. I., and Blau, H. M. (2000). From marrow to brain: Expression of neuronal phenotypes in adult mice. Science 290:1775–1779.

    Article  CAS  PubMed  Google Scholar 

  • Bregman, B. S. (1987). Spinal cord transplants permit the growth of serotonergic axons across the site of neonatal spinal cord transection. Brain Res. 431:265–279.

    CAS  PubMed  Google Scholar 

  • Brustle, O., Jones, K. N., Learish, R. D., Karram, K., Choudhary, K., Wiestler, O. D., et al. (1999). Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285:754–756.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Katakowski, M., Li, Y., Lu, D., Wang, L., Zhang, L., et al. (2002). Human bone marrow stromal cells cultures conditioned by traumatic brain tissue extracts: Growth factor production. J. Neurosci. Res. 69:687–691.

    Article  CAS  PubMed  Google Scholar 

  • Chong, Z. Z., Kang, J. Q., and Maiese, K. (2002). Hematopoietic factor erythropoietin fosters neuroprotectionthrough novel signal transduction cascades. J. Cereb. Blood Flow Metab. 22:503–514.

    Article  CAS  PubMed  Google Scholar 

  • Chopp, M., and Li, Y. (2002). Treatment of neural injury with marrow stromal cells. Lancet Neurol. 1:92–100.

    Article  PubMed  Google Scholar 

  • Chopp, M., Zhang, X. H., Li, Y., Wang, L., Chen, J., Lu, D., et al. (2000). Spinal cord injury in rat: Treatment with bone marrow stromal cell transplantation. Neuroreport 11:3001–3005.

    CAS  PubMed  Google Scholar 

  • Coumans, J. V., Lin, T. T., MacArthur, L., McAtee, M., Nash, C., and Bregman, B. S. (2001). Axonal regeneration and functional recovery after complete spinal cord transection in rats by delazed treatment with transplants and neurotrophins. J. Neurosci. 21:9334–9344.

    CAS  PubMed  Google Scholar 

  • Dame, C., Wolber, E. M., Freitag, P., Hofmann, D., Bartmann, P., and Fandrey, J. (2003). Trombopoietingene expression in the developing human central nervous system. Brain Res. Dev. Brain Res. 143:217–223.

    Article  CAS  PubMed  Google Scholar 

  • Eaves, C. J., Cashman, J. D., Kay, R. J., Dougherty, G. J., Otsuka, T., Gaboury, L. A., et al. (1991). Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. II. Analysis of positive and negative regulators produced by stromal cells within the adherent layer. Blood 78:110–117.

    CAS  PubMed  Google Scholar 

  • Eglitis, M. A., Dawson, D., Park, K. W., and Mouradian, M. M. (1999). Targeting of marrow-derived astrocytes to the ischemic brain. Neuroreport 10:1289–1292.

    CAS  PubMed  Google Scholar 

  • Fawcett, J. W., and Asher, R. A. (1999). The glial scar and central nervous system repair. Brain Res. Bull. 49:377–391.

    Article  CAS  PubMed  Google Scholar 

  • Geisler, F. H., Coleman, W. P., Grieco, G., and Poonian, D. (2001). The Sygen multicenter acute spinal cord injury study. Spine 26:S87–98.

    Article  CAS  PubMed  Google Scholar 

  • Hejčl, A., Urdzíková, L., Přádný, M., Michálek, J., Jendelová, P., and Syková, E. (2005). Positively charged HEMA-based hydrogels implanted immediately and one week after spinal cord injury in rat. Abstract, Fifth Czech Neuroscience Conference, Prague, Czech Republic.

  • Hofstetter, C. P., Schwarz, E. J., Hess, D., Widenfalk, J., El Manira, A., Prockop, J. D., and Olson, L. (2002). Marrow stromal cellsform guiding strands in the injured spinal cord and promote recovery. Proc. Natl. Acad. Sci. U.S.A. 96:2199–2204.

    Article  CAS  Google Scholar 

  • Horvat, J. C. (1991). Transplants of fetal neural tissue and autologous peripheral nerves in an attempt to repair spinal cord injuries in the adult rat. An overall view. Paraplegia 29:299–308.

    CAS  PubMed  Google Scholar 

  • Houle, J. D., and Ziegler, M. K. (1994). Bridging a complete transection lesion of adult rat spinal cord with growth factor-treated nitrocellulose implants. J. Neural Transpl. Plast. 5:115–124.

    CAS  Google Scholar 

  • Houweling, D. A., Lankhorst, A. J., Gispen, W. H., Bar, P. R., and Joosten, E. A. (1998). Collagen containing neurotrophin-3 (NT-3) attracts regrowing injured corticospinal axons in the adult rat spinal cord and promotes partial functional recovery. Exp. Neurol. 153:49–59.

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz, H., Cass, D. E., Dvorak, M. F., Fewer, D. H., Fox, R. J., Izukawa, D. M., et al. (2002). High-dose methylprednisolone for acute closed spinal cord injury–only a treatment option. Can. J. Neurol. Sci. 29:227–235.

    Google Scholar 

  • Inoue, M., Honmou, O., Oka, S., Houkin, K., Hashi, K., and Kocsis, J. D. (2003). Comparative analysis of remyelinating potential of focal and intravenous administration of autologous bone marrow cells into the rat demyelinated spinal cord. Glia 44:111–118.

    Article  PubMed  Google Scholar 

  • Iwanami, A., Kaneko, S., Nakamura, M., Kanemura, Y., Mori, H., Kobayashi, S., et al. (2005). Transplantation of human neural stem cells for spinal cord injury in primates. J. Neurosci. Res. 80:182–190.

    Article  CAS  PubMed  Google Scholar 

  • Jendelová, P., Herynek, V., De Croos, J., Glogarová, K., Andersson, B., Hájek, M., and Syková, E. (2003). Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn. Reson. Med. 50:767–776.

    Article  PubMed  CAS  Google Scholar 

  • Jendelová, P., Lesný, P., Přádný, M., Hejčl, A., Michálek, J., and Syková, E. (2004a). Hydrogel implantation into a spinal cord lesion— an alternative to conventional cell grafting. Program No. 106.13.2004. Abstract Viewer/Itinerary Planner: Online.

  • Jendelová, P., Herynek, V., Urdzíková, L., Glogarová, K., Kroupová, J., Bryja, V., et al. (2004b). MR tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J. Neurosci. Res.:232–243.

  • Kuhlengel, K. R., Bunge, M. B., Bunge, R. P., and Burton, H. (1990). Implantation of cultured sensory neurons and Schwann cells into lesioned neonatal rat spinal cord. II. Implant characteristics and examination of corticospinal tract growth. J. Comp. Neurol. 293:74–91.

    Article  CAS  PubMed  Google Scholar 

  • Lee, D. H., Strittmatter, S. M., and Sah, D. W. (2003). Targeting the Nogo receptor to treat central nervous system injuries. Nat. Rev. Drug Discov. 2:872–878.

    Article  CAS  PubMed  Google Scholar 

  • Lesný, P., De Croos, J., Přádný, M., Vacik, J., Michálek, J., Woerly, S., and Syková, E. (2002). Polymer hydrogels usable for nervous tissue repair. J. Chem. Neuroanat. 23:243–247.

    Article  PubMed  Google Scholar 

  • Lesný, P., Přádný, M., Jendelová, P., Michálek, J., Vacik, J., and Syková, E. (in press). Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 4: Growth of rat bone marrow stromal cells in three-dimensional hydrogels with positive and negative surface charges and in polyelectrolyte complexes. J. Mater. Sci. Mater. Med.

  • Liu, S., Bodjarian, N., Langlois, O., Bonnard, A. S., Boisset, N., Peulve, P., et al. (1998). Axonal regrowth through a collagen guidance channel bridging spinal cord to the avulsed C6 roots: Functional recovery in primates with brachial plexus injury. J. Neurosci. Res. 51:723–734.

    Article  CAS  PubMed  Google Scholar 

  • Lu, D., Mahmood, A., Wang, L., Li, Y., Lu, M., and Chopp, M. (2001). Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 12:559–563.

    Article  CAS  PubMed  Google Scholar 

  • Mahmood, A., Lu, D., Wang, L., and Chopp, M. (2002). Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. J. Neurotrauma. 19:1609–1617.

    Article  PubMed  Google Scholar 

  • Majunder, M., Thiede, M., and Mosca, J. (1998). Phenotype and funtional comparison of cultured of marrow derived mesenchymal stem cells and stomal cells. J. Cell. Physiol. 176:57–66.

    Article  Google Scholar 

  • Maquet, V., Martin, D., Scholtes, F., Franzen, R., Schoenen, J., Moonen, G., and Jer me, R. (2001). Poly(D,L-lactide) foams modified by poly(ethylene oxide)-block-poly(D,L-lactide) copolymers and a-FGF: in vitro and in vivo evaluation for spinal cord regeneration. Biomaterials 22:1137–1146.

    Article  CAS  PubMed  Google Scholar 

  • Mehler, M. F., Rozental, R., Dougherty, M., Spray, D. C., and Kessler, J. A. (1993). Cytokine regulation of neuronal differentiation of hippocampal progenitor cells. Nature 362:62–65.

    Article  CAS  PubMed  Google Scholar 

  • Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., and McKercher, S. R. (2000). Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, Y., Sawamoto, K., Miyta, T., Watanabe, M., Nakamura, M, Bregman, B., et al. (2002). Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J. Neurosci. Res. 69:925–933.

    Article  CAS  PubMed  Google Scholar 

  • Okada, S., Ishii, K., Yamane, J., Iwanami, A., Ikegami, T., Katoh, H., et al. (2005). In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. FASEB J. 19:1839–1841.

    CAS  PubMed  Google Scholar 

  • Oudega, M., Gautier, S. E., Chapon, P., Fragoso, M., Bates, M. L., Parel, J. M., and Bunge, M. B. (2001). Axonal regeneration into Schwann cell grafts within resorbable poly(alpha-hydroxyacid) guidance channels in the adult rat spinal cord. Biomaterials 22:1125–1136.

    Article  CAS  PubMed  Google Scholar 

  • Park, H. C., Shims, Y. S., Ha, Y., Yoon, S. H., Park, S. R., Choi, B. H., and Park, H. S. (2005). Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng. 11:913–922.

    Article  CAS  PubMed  Google Scholar 

  • Pitts, L. H., Ross, A., Chase, G. A., and Faden, A. I. (1995). Treatment with thyrotropin-releasing hormone (TRH) in patients with traumatic spinal cord injuries. J. Neurotrauma 12:235–243.

    Article  CAS  PubMed  Google Scholar 

  • Pointillart, V., Petitjean, M. E., Wiart, L., Vital, J. M., Lassie, P., Thicoipe, M., and Dabadie, P. (2000). Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord. 38:71–76.

    Article  CAS  PubMed  Google Scholar 

  • Přádný, M., Lesný, P., Fiala, J., Vacik, J., Slouf, M., Michálek, J., and Syková, E. (2002). Macroporous hydrogels based on 2-hydroxyethylmethacrylate. Part 1. Copolymers of 2-hydroxyethylmethacrylate with methacrylic acid. Collection Czech Chem. Commun. 68:812–822

    Article  CAS  Google Scholar 

  • Přádný, M., Michálek, J., Lesný, P., Hejčl, A., Vacík, J., Slouf, M., and Syková, E. (in press). Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 5: Hydrolytically degradable materials. J. Mater. Sci. Mater. Med.

  • Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, M., Honmou, O., Akiyama, Y., Uede, T., Hashi, K., and Kocsis, J. D. (2001). Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons. Glia 35:26–34.

    Article  CAS  PubMed  Google Scholar 

  • Syková, E., and Jendelová, P. (2005). Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann. N. Y. Acad. Sci. 1049:146–160.

    Article  PubMed  Google Scholar 

  • Syková, E., Jendelová, P., Glogarová, K., Urdzíková, L., Burian, M., and Hájek, M. (2005a). Bone marrow cells as tool for the therapy of spinal cord injury. Program No 819.7 2005. Abstract viewer/Itinerary Planner, Society for Neuroscience, Washington, DC.

  • Syková, E., Urdzíková, L., Jendelová, P., Burian, M., Glogarová, K., and Hájek, M. (2005b). Bone marrow cells—a tool for spinal cord injury repair. Exp. Neurol. 193:261–262.

    Google Scholar 

  • Teng, Y. D., Lavik, E. B., Qu, X., Park, K. I., Ourednik, J., Zurakowski, D., et al. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. PNAS 99:3024–3029.

    Article  CAS  PubMed  Google Scholar 

  • Urdzíková, L., Jendelová, P., Glogarová, K., Burian, M., Hájek, M., and Syková, E. (in press). Transplantation of bone marrow stem cells as well as mobilization by granulocyte— colony stimulating factor promote recovery after spinal cord injury in rat. J. Neurotrauma

  • Urdzíková, L., Jendelová, P., Glogarová, K., and Syková, E. (2005). The intravenous treatment with mesenchymal stromal cells promotes functional recovery of chronic spinal cord injuries. In Cassoviensia, F. M. (ed.), 5th International Symposium on Experimental and Clinical Neurobiology. Stara Lesna—The High Tatras, Slovak Republic, Institute of Neurobiology, Slovak Academy of Sciences, Faculty of Medicine, P.J. Šafárik University in Košice, pp. 124.

  • Venstrom, K. A., and Reichardt, L. F. (1993). Extracellular matrix. 2: Role of extracellular matrix molecules and their receptors in the nervous system. Faseb J. 7:996–1003.

    CAS  PubMed  Google Scholar 

  • Wang, L., Li, Y., Chen, J., Gautam, S. C., Zhang, Z., Lu, M., and Chopp, M. (2002). Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp. Hematol. 30:831–836.

    Article  CAS  PubMed  Google Scholar 

  • Woerly, S., Doan, V. D., Sosa, N., de Vellis, J., and Espinosa, A. (2001b). Reconstruction of the transected cat spinal cord following NeuroGel implantation: axonal tracing, immunohistochemical and ultrastructural studies. Int. J. Dev. Neurosci. 19:63–83.

    Article  CAS  PubMed  Google Scholar 

  • Woerly, S., Pinet, E., de Robertis, L., Van Diep, D., and Bousmina, M. (2001a). Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials 22:1095–1111.

    Article  CAS  PubMed  Google Scholar 

  • Woerly, S., Pinet, E., De Robertis, L., Bousmina, M., Laroche, G., Roitback, T., et al. (1998). Heterogeneous PHPMA hydrogels for tissue repair and axonal regeneration in the injured spinal cord. J. Biomater. Sci. Polym. Ed. 9:681–711.

    CAS  PubMed  Google Scholar 

  • Woodbury, D., Schwarz, E. J., Prockop, D. J., and Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61:364–370.

    Article  CAS  PubMed  Google Scholar 

  • Wrathall, J. R., Rigamonti, D. D., Braford, M. R., and Kao, C. C. (1982). Reconstruction of the contused cat spinal cord by the delayed nerve graft technique and cultured peripheral non-neuronal cells. Acta Neuropathol. (Berl.) 57:59–69.

    Article  CAS  Google Scholar 

  • Wu, S., Suzuki, Y., Ejiri, Y., Noda, T., Bai, H., Kitada, M., et al. (2003). Bone marrow stromal cells enhance differentiation of cocultured neurospheres cells and promote regeneration of injured spinal cord. J. Neurosci. Res. 72:343–351.

    Article  CAS  PubMed  Google Scholar 

  • Xu, X. M., Chen, A., Guenard, V., Kleitman, N., and Bunge, M. B. (1997). Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J. Neurocytol. 26:1–16.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Supported by ASCR50390512, GACR309/06/1594, 309/06/1246, 1A8697-5/2005, NR8339-3, and MSMT 1M0021620803, LC554.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Syková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syková, E., Jendelová, P., Urdzíková, L. et al. Bone Marrow Stem Cells and Polymer Hydrogels—Two Strategies for Spinal Cord Injury Repair. Cell Mol Neurobiol 26, 1111–1127 (2006). https://doi.org/10.1007/s10571-006-9007-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9007-2

KEY WORDS:

Navigation